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1. Introduction
U.S. health care spending rose from 5% of GDP in 1960 to 17.7% in 2019 (Hartman et al., 2021). Over

this same period, life expectancy in the U.S. has increased by 9 years (Arias et al., 2019). A number

of prominent papers argue that if gains in life expectancy are due to technological improvements in

medical care, then the increase in health care costs may reflect welfare improvements (Murphy and

Topel, 2006; Hall and Jones, 2007), even if they are a major contributing factor to cost growth (Chernew

and Newhouse, 2011). There is also a substantial literature arguing that the prices of new healthcare

innovations is excessive, especially in the U.S.2

At the heart of the debate is a measurement challenge; measuring the value of medical innovation

is notoriously difficult. In most non-medical care markets, a common approach to measuring value

(and quality) is to apply methods that rely on revealed preferences or hedonics. However, there are

numerous market distortions in health care which complicate the use of these methods.3 Because of

these distortions, a common approach to measuring the value of medical care is to use outcome measures

(e.g., mortality) (Sheiner and Malinovskaya, 2016; Cutler et al., 1998, 2022). This literature has made a

substantial contribution towards our understanding of the productivity of medical care spending (Cutler

et al., 2022). However, the outcomes-based approach does not identify which technologies are driving the

associated changes in outcomes and costs, so it cannot directly measure how innovation impacts these

markets. Yet, the pharmaceutical industry spends $120 billion per year on R&D and it is estimated that

about 35% of medical spending growth is due to innovation, so understanding how medical innovation

impacts welfare is important (Austin and Hayford, 2021; Smith et al., 2022).

Our paper takes a unique approach to measuring innovation, quality, and cost in the health care sector

by leveraging the knowledge accumulated in the medical literature. We use the Tufts Cost-Effectiveness

Analysis Registry (CEAR) database of over 8,000 cost effectiveness studies to estimate the quality

of specific treatments. We then match these treatments with the medical claims data of millions of

commercially-insured individuals to measure how these treatments diffuse. This newly combined dataset

contributes a novel and rich source of information for understanding and measuring cost growth and

innovation in the health care sector.

Measuring which technologies diffuse and their quality and cost is critical for examining a number of

important questions related to medical innovation: Do quality improving innovations diffuse or is the

diffusion driven more by the cost-effectiveness of the innovations? Do innovations improve consumer

welfare? Societal welfare? And by how much? How much incentive do producers have to innovate?

How do these effects change over the life cycle of innovations, especially as prices change due to generic

entry? Is the spending on R&D worth the societal benefit? How much do these answers vary across

treatments, conditions, and the degree of innovation? This paper is the first that we are aware of that

2 For example, Hall and Jones (2007); Murphy and Topel (2006); Cutler and McClellan (2001); Cutler et al. (2022) view
innovation as improving welfare, while Cutler (2018); Shrank et al. (2019); Kesselheim et al. (2016) argue that the price
of medical care is excessive.

3 These distortions which complicate revealed preference approaches include: insurance coverage insulating patients from
risk (moral hazard), insurers distorting demand through formulary design, principal agent problems, and imperfect infor-
mation (Aizcorbe and Nestoriak, 2012; Dauda et al., 2022).
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systematically examines these questions for a large number conditions and innovative treatments.

A cost-effectiveness study typically evaluates a medical innovation against a standard of care treatment.

To answer these broader questions, we aggregate across individual studies by classifying treatments to

match across studies, estimating average quality for each treatment, and linking treatments to insurance

claims data from millions of individuals to track their diffusion. We then apply the framework from Cutler

et al. (1998) to translate our cost and quality measures into consumer welfare and quality-adjusted

price indexes. In this approach, consumer welfare depends on (1) health outcomes from medical care,

measured by combining CEAR quality metrics with diffusion measured in insurance claims data, (2) the

value of a statistical life year, for which we present results for a range of assumptions, and (3) the costs

of care, which we measure using insurance claims and adjust for rebates. Consistent with the literature,

costs represent insurer and patient payments, with “cost” and “spending” used interchangeably in this

paper. In this framework, if consumer welfare rises for a condition, the quality-adjusted price of treatment

falls, and vice versa.

We focus on 13 conditions (asthma, atrial fibrillation, colon cancer, cystic fibrosis, hypertension, hepatitis

C, HIV, lung cancer, multiple sclerosis, osteoporosis, rheumatoid arthritis, schizophrenia, and venous

thromboembolism) where we feel our methodology most accurately captures innovations and changes

in the quality of treatment. In particular, we focus on conditions: (1) where most of the treatment

(or innovation) for the condition is through pharmaceuticals — where the mapping from the CEAR

database to the insurance claims database is feasible and the mapping from treatment to outcomes

is less complex, and (2) where the set of drugs we observe in the CEAR data account for nearly all

pharmaceutical spending for that condition. The 13 conditions we study are important in their own

right as they account for $191 billion in medical spending annually, or 8%, of total medical expenditure

and 14% of pharmaceutical expenditures in 2018.4

Our approach yields a number of novel insights into the important questions outlined above. We find

that (1) higher quality innovations generally diffuse so measures of inflation are likely overstated; (2)

however, in many instances, innovations are priced so high that they are not cost effective and can lower

consumer welfare, but still diffuse due to insurance; (3) producers can capture more than 100% of the

surplus they create (in the short run); (4) but in the long run, consumers are better off due to generic

entry; (5) and it appears that the value created for society is still considerably larger than the R&D costs

of innovation. Common theoretical assumptions would rule out some of these findings, which highlights

the importance of documenting these empirical facts.

Across all the conditions we study, we find considerable evidence of innovation. For all the conditions

(except one) there is at least some quality improvement and seven of our thirteen conditions have

consumer welfare improving when assuming that the value of a statistical life year (VSLY) is $100,000,

implying declining quality-adjusted price indexes. If we assume a VSLY of $500,000, then we find nine

of our thirteen conditions have declining quality-adjusted prices. While we caution against extrapolating

outside the sample, we aggregate across these conditions to measure the average quality-adjusted price

4 These results are based on the BEA Health Care Satellite Account (HCSA) (Dunn et al., 2015).
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index within our sample. We find that without adjusting for quality, on average, prices for these

conditions increase by 75% from 2007 to 2018, relative to economy-wide inflation. Meanwhile, our

quality-adjusted price index, assuming a VSLY of $100,000, rises by 47% — a reduction of 1.6 percentage

points in the compound annual growth rate. If we assume a $500,000 VSLY, the quality-adjusted price

index falls by 65%. This suggests that price indexes which do not account for quality improvements

may be overstating price growth. This is important as there is currently no quality adjustment in official

health care prices from the U.S. Bureau of Labor Statistics (Bosworth et al., 2018).

Surprisingly, several of the markets where consumer welfare declined experienced a lot of innovation

and large quality improvements. However, those quality improvements were small relative to the cost

increase. This result is surprising because without market distortions, a standard model of demand

would suggest that an innovation would not diffuse if its price was so high that it lowered consumer

welfare.

To understand why this occurs, we take the example of Orkambi, a 2015 breakthrough therapy for

cystic fibrosis. We find a sizeable quality improvement of taking Orkambi: 0.9 quality-adjusted-life years

(QALYs), where 1 QALY is a year of life in perfect health. In our data, insurers and patients combine

to pay more than $150,000 per year for Orkambi, or over $3 million in lifetime costs. While Orkambi

contributes to major health improvements, in our framework one would need to assume a VSLY of over

$3 million for these high costs to be “worth it,” which is a value far higher than any in the literature.

Hence, when accounting for the total cost, this innovation reduces overall consumer welfare as the cost

growth overwhelms the quality improvements. Yet, Orkambi had taken roughly 20% market share by

2018. One potential explanation for its diffusion, despite its high cost, is insurance. In our data, on

average Orkambi costs $1,500 per year out-of-pocket, suggesting that insured patients using Orkambi

are benefiting greatly as most of the cost is paid by insurance (and other consumers if these costs raise

premiums). This is not an isolated case. We find that for six of our conditions, consumer welfare in 2018

is lower than it would have been in a counterfactual that assumes no new treatments (i.e., maintains

the treatment portfolio in 2007).5

While we find several examples of new innovations that lower consumer welfare, these innovations

increase total welfare as the high price of these drugs increases producer profits. One interesting

implication of consumer surplus falling due to innovation is that producers are receiving more than

100% of the surplus from their innovations. A famous result in innovation economics is that patents

provide insufficient incentives for innovation, as the innovator is not able to capture all the surplus

(Nelson, 1959; Arrow, 1962). Our results show that may not be the case if distortions (such as moral

hazard from insurance) lead products with negative consumer surplus to diffuse. In theory, this could

lead to socially inefficient over-investment in costly research and development (R&D). However, in a

back-of-the-envelope calculation we find that welfare gains from innovation are an order of magnitude

higher than the costs of R&D estimated in DiMasi et al. (2016).

5 Many drugs for these conditions are not viewed as cost-effective by the literature. As Jena and Philipson (2008) argue,
cost-effectiveness is related to consumer welfare. Therefore, the result that consumer welfare is declining is consistent
with the cost-effectiveness literature, which finds that many of these drugs that are diffusing are not cost-effective.
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While the focus of our paper is on how innovations shape markets, non-innovative markets demonstrate

how these markets mature, including eventual patent expiration, providing a more long-run and com-

plete view of how innovations impact markets. We find that non-innovative markets, like colon cancer

and hypertension, have falling price indexes and rising consumer welfare because of patent expiration.

This highlights how the high prices and reductions in consumer welfare are potentially a short-run phe-

nomenon. To explore this further, we compute a counterfactual where we reduce prices of all on-patent

drugs by 85%, simulating the long-run changes in pricing. In this counterfactual, all conditions, except

cystic fibrosis, have higher consumer welfare in 2018 than in 2007.

As noted by Bryan and Williams (2021), one of the fundamental challenges of measuring the value of

innovation is taking measures of innovation, such as patents or clinical trial investments, and connecting

them to “changes in welfare, which depend on how new innovations impact prices and health outcomes,

but opportunities to construct such direct linkages to welfare-relevant outcomes are quite rare.” In this

paper, we construct these linkages. The patterns we observe are consistent with the textbook life-cycle

model of innovation, where the benefits first accrue to producers, then to consumers through patent

expiration and prices falling. However, we find a number of unconventional (but intuitive) results about

how innovation and patent expiration shape welfare in health care markets. These results highlight the

importance of empirical evidence in health care markets where multiple distortions can cloud theoretical

predictions and conventional wisdom about innovation.

2. Literature Review
Our paper relates to multiple literatures on innovation in health care markets. Outside of healthcare,

innovation generally leads to welfare improvements. However, the reverse is possible in markets where

distortions may lead to inefficient pricing and the diffusion of products where costs exceed the benefits

(Chandra and Skinner, 2012). Motivated by the distortions in health care markets, Chandra et al.

(2016) explore whether health care is an exception. Like us, they find the diffusion of higher quality

care. This suggests that health care markets are responsive to quality, which they refer to as a “signpost

of competition.” However, we find several cases of new treatments that diffuse which are higher quality,

but not cost-effective. This is consistent with the findings in Kyle and Williams (2017) who find high-cost

drugs diffuse faster in the U.S. than other countries.

For the purposes of our paper, the main advantage of assigning quality and cost measures at the

treatment level is it allows us to be specific about which innovations are driving quality improvements

and changes in costs. Given the difficulty of measuring individual innovations, one common approach

to measure innovation is to control measurable drivers of spending (e.g., age, insurance, price, and

income), then, following the logic of Solow (1957), the residual is attributed to innovation.6 Our

granular approach allows us to both decompose the share of spending due to innovation, by observing

these innovations directly, but also weigh the cost growth against measures of quality improvement.

Having such rich data allows us to look at many conditions and innovations in a systematic, yet granular

6 See Newhouse (1992)Smith et al. (2009), and Smith et al. (2022).
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fashion. Because we apply a systematic methodology, our results are also more comparable across

conditions, leading to general insights. We view this as an important contribution. While prior case

studies have led to advancements in the literature, they vary in assumptions and methodologies, as

they adapt to the unique institutional details and features of each condition and innovation, making it

difficult to generalize results, or gauge the relative magnitudes across studies.7

Our paper also relates to recent work by Cutler et al. (2022) who use population-level measures of

spending and health to derive measures of productivity and quality-adjusted medical-care price indexes

across a comprehensive set of medical conditions. Outcome-focused measures better capture the eco-

nomic object of interest (improved health) and abstract from the often non-linear process by which

treatment impacts health (Chernew and Newhouse, 2011). On the other hand, the outcome-based

approach requires observable outcomes and strong assumptions regarding whether the observed change

in health is attributable to improvements in medical care. It also does not link specific innovations to

health outcomes, which is essential for our paper.8 In addition, the outcome-based approach may better

capture quality improvements for conditions where outcomes (e.g., mortality or disability) are easier to

measure, whereas our approach may better capture conditions where treatments may improve the quality

of life, rather than lengthening life. Hence, we view our paper as complementary to these outcomes-

based papers. However, our paper is focused on a different question of how specific innovations and the

adoption of technologies affects welfare and incentives to both produce new innovations.

Finally, our paper relates to Hult et al. (2018) and Dunn et al. (2022), who also use the CEAR data to

construct quality-adjusted price indexes. Dunn et al. (2022) show that medical innovations typically lead

to quality-adjusted prices declining, but Hult et al. (2018) and Dunn et al. (2022) use the CEAR data

at a very aggregate level. To produce an aggregate quality-adjusted price change Dunn et al. (2022)

imposes strong assumptions , including an assumption that all technologies diffuse at a constant rate.

This is an important assumption as the types of technologies adopted (e.g., more or less cost-effective

technologies), the size of the market (e.g., heart disease or hemophilia), and the speed and depth

by which they are adopted is central to the policy discussion on the cost and benefits to consumers,

the incentives of producers to innovate, and the societal value of innovation. Stated differently, those

papers take a top-down approach, while this paper takes a bottom-up approach by matching specific

treatments in the CEAR database to the diffusion of treatments in medical claims data. While the

bottom-up approach requires a substantial amount of additional data work, it also provides much more

detailed information about which technologies are used in practice, allowing us to systematically examine

a number of important questions that would not be possible using a top-down approach.9

7 Papers which focus on individual or a few cases include: Almond et al. (2010); Cutler et al. (1998); Cutler and McClellan
(2001); Shapiro et al. (2001); Berndt et al. (2002); Frank et al. (2004); Lucarelli et al. (2022); Eggleston et al. (2020);
Dauda et al. (2022). See Sheiner and Malinovskaya (2016) for a more complete review.

8 Notably, Cutler et al. (2022) acknowledge the potential challenge of attributing changes in population health to the
medical care sector, so they also apply a disease model to cardiovascular conditions, which, similar to our paper, relies on
the medical literature to measure the quality of treatment, rather than the observed health outcomes. For cardiovascular
conditions, they find the two approaches yield similar results.

9 Properly weighting innovations based on their usage is critical for accurately measuring welfare. For example, a major
breakthrough innovation for a rare disease may have less of a welfare impact than a marginal innovation which diffuses
broadly.
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3. Background

3.1. The Case of Hepatitis C and Rheumatoid Arthritis

While we construct our index for 13 conditions, we begin our exposition with a focus on hepatitis C and

rheumatoid arthritis as they both experienced considerable cost growth during our sample period, but

the dynamics in each market are different in ways that help demonstrate how our methodology works

and some of the main takeaways.

Hepatitis C is a viral infection that can cause inflammation of the liver. The condition is serious, but

it can take years for symptoms to develop and for the disease to progress. If left untreated the disease

can cause liver cancer, liver disease, liver failure, and potentially death. It has been estimated that over

the 2013 to 2016 period, around 2.4 million individuals in the U.S. had hepatitis C (Hofmeister et al.,

2019).

Hepatitis C drugs were in the national spotlight in 2014 after Gilead, a biopharmaceutical company,

priced its breakthrough treatment, Sovaldi, at $84,000 per treatment regimen, a controversial decision

at the time, but the drug was seen as curative with fewer side effects than the alternatives. While the

cost of Sovaldi made headlines, in the context of our paper, hepatitis C is interesting because there was

actually a sequence of important new innovations.

Figure 1 shows how the prices (adjusted for rebates using SSR Health data) and market shares for the

top hepatitis C treatments evolved during our sample period. At the beginning of our sample in 2007,

the standard treatment for hepatitis C was Pegylated Interferon (P-Interferon) and Ribavirin (RBV),

which had low cure rates and severe side effects. In 2011, Incivek and Victrelis entered the market.

These drugs were more expensive, but also higher quality than P-Interferon. However, these drugs were

soon followed by Sovaldi (launched in December 2013), which was both a much higher cost and more

effective than all previous alternatives. Finally, Harvoni, Epclusa, and Viekira Pak entered starting in

late 2014. These drugs are more effective than Sovaldi and less expensive, likely due to the greater

competition among highly effective treatments upon entry.
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Figure 1. Market shares and prices for the top hepatitis treatments over time

Notes: Estimates are derived from MarketScan claims data described in the data section. The top panel of this figure

presents the patient-weighted market shares by year for the nine highest volume drugs for hepatitis C across our entire

sample period in the MarketScan data. The bottom panel presents the average price per year of the five highest volume

drugs in our sample. They are not scaled to lifetime costs. Drugs do not have prices in all years because either they

have not entered the market yet or they stop being used. The drug prices are deflated to 2018 dollars using the Personal

Consumption Expenditure (PCE) deflator and adjusted for rebates using SSR Health data.

Rheumatoid arthritis provides a nice contrasting case to hepatitis C. Rheumatoid arthritis is a chronic

autoimmune condition associated with inflammation, severe joint pain, and, if untreated, joint deterio-
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ration. There are about 1.3 million people in the U.S. with rheumatoid arthritis. As with hepatitis C,

rheumatoid arthritis is typically not fatal with proper treatment.

Figure 2 shows price and market shares for rheumatoid arthritis. The baseline treatment for rheumatoid

arthritis is methotrexate, which entered the market in 1947 to treat cancer and was shown to be useful

in treating rheumatoid arthritis in the 1980s. For some patients, methotrexate is less effective and over

time the effectiveness may wane. When this occurs, there are a number of higher-cost disease-modifying

antirheumatic drugs (DMARDs), the most popular of which are etanercept (Enbrel) and adalimumab

(Humira), which entered the market in 1998 and 2002, respectively. This new generation of drugs is

seen as highly effective at preventing significant joint deterioration and can reduce joint pain. However,

these new drugs were already in the market prior to our sample period. Hence, we see almost no change

in market shares (Figure 2), which implies relatively limited changes in quality from new treatments for

rheumatoid arthritis patients. The average patient in 2007 received a similar basket of treatments to a

patient in 2018.
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Figure 2. Market shares and prices for the top rheumatoid arthritis treatments over time

Notes: Estimates are derived from MarketScan claims data described in the data section. The top panel of this figure

presents the patient-weighted market shares by year for the nine highest volume drugs for rheumatoid arthritis across our

entire sample period in the MarketScan data. The bottom panel presents the average price per year of the five highest

volume drugs in our sample. They are not scaled to lifetime costs. Drugs do not have prices in all years because either

they have not entered the market yet or they stop being used. The drug prices are deflated to 2018 dollars using the PCE

deflator and adjusted for rebates using SSR Health data.
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At the same time, rheumatoid arthritis treatments have gained notoriety for price increases.10 As we

show in Figure 2, the price for Enbrel doubled, while the price for Humira has nearly tripled (after

adjusting for rebates and economy-wide inflation). Within-molecule price increases mean that costs are

rising quickly, even if there are no major quality improvements for this condition.

In summary, hepatitis C and rheumatoid arthritis are two conditions which have highly effective treat-

ments and have been noted for rising costs in recent years. However, for hepatitis C, these cost increases

coincide with the diffusion of new innovative drugs, while for rheumatoid arthritis the cost growth does

not appear to be due to new innovations.

The goal of this paper is to better understand how these changes in the market translate into quality

improvements and cost increases. Our methodology estimates average quality measures for each of

these treatments and matches them with their respective market shares to better understand how the

quality of treatment for the average patient changes over time. We summarize the consumer welfare

change using a quality-adjusted price index, which we describe in more detail below.

3.2. Cost-effectiveness Studies

The goal of this subsection is to highlight how cost-effectiveness studies, which are comparisons of two

treatments, provide information which can be aggregated to compute consumer welfare at the disease

level.

Cost-effectiveness analysis is one of the most widely applied tools to guide policy surrounding the

allocation of medical care resources (Meltzer and Smith, 2011). A standard cost-effectiveness analysis

compares the cost and effectiveness of a medical intervention, such as a new innovation (I), with a

“comparator” or standard of care (SOC) treatment (i.e., a commonly used treatment for a particular

condition). Let SI and SSOC be the costs for the innovation, I, and standard of care treatment, SOC,

respectively. The effectiveness of a treatment, denoted by HI and HSOC , is typically measured in years

of life or quality-adjusted-life years (QALYs), where QALYs account for both the mortality and the

quality-of-life. One QALY represents one year of life in perfect health.

An important feature of cost-effectiveness studies is that the costs and health outcomes for both I and

SOC are measured identically across the two treatments, covering the same population and applying

identical study features. This allows for the measurement of the relative cost and effectiveness of I

compared to SOC, holding other variables fixed. If a dollar value can be placed on life years gained,

then researchers can calculate the net benefit. The dollar value placed on a QALY is often measured

as a value of a statistical life year (VSLY), which measures an individual’s value of living an additional

year.

10The House Committee on Oversight and Reform released a report which highlights a few reasons why prices might rise so
rapidly. Potential reasons include executive compensation being tied to revenue targets and firms using the other firms’
price increases as political cover to raise prices. This is also consistent with “penetration pricing,” where manufacturers
may introduce the product with lower prices to induce switching to their product. Then, as patients and doctors gain a
taste for the product, manufacturers can raise their prices as current customers become less price sensitive. See “House
Committee Takes On Pricing, Patents for Top-Selling Drug Humira,” Wall Street Journal, 2021.
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The elements of a cost-effectiveness study can be used to express the net benefit or consumer welfare

from the innovation in a dollar amount.

∆ Consumer WelfareI,SOC = V SLY · (HI −HSOC)− (SI − SSOC) (1)

The first term, V SLY · (HI − HSOC), captures the incremental dollar value in health benefits from

innovation, relative to the SOC treatment, and the second term captures the change in cost, relative

to the SOC treatment. One important observation from this equation is that a cost-effective treatment

will increase consumer welfare if it replaces its comparator (assuming a VSLY), while a treatment that

is not cost-effective will lower consumer welfare if it replaces its comparator.

4. Consumer Welfare and Quality-Adjusted Price Indexes
In this section we describe the utility-based price index. The theory used to construct the index for the

treatment of a condition has been outlined and discussed in other papers including Cutler et al. (1998),

Sheiner and Malinovskaya (2016), and Dauda et al. (2022). We construct price indexes separately by

disease, indexed by d.11

As discussed in Fisher and Shell (1972), a utility-based cost-of-living price index measures the relative

expenditures needed to maintain the same level of utility across periods, given changes in prices, and

in our case, quality. This idea connects directly to the cost-effectiveness discussion in the previous

section, but instead of calculating the consumer welfare from switching away from the standard of care

treatment, SOC, to the innovative treatment, I, we calculate the consumer welfare of receiving a typical

treatment at a point in time, t−1, relative to treatments received at time, t.12 Changing the subscripts

in Equation 1 accordingly, we obtain the following equation for the consumer welfare change over time:

∆ Consumer Welfared,t,t−1 = V SLY · (Hd,t −Hd,t−1)− (Sd,t − Sd,t−1). (2)

∆ Consumer Welfaret,t−1 accounts for the change in the price and quality of treatment.13

The associated price index measures the percent change in treatment expenditures needed to purchase

a fixed level of utility across the two periods. This can be formed as a ratio where the denominator is

11Condition-based inflation measures are recommended in National Research Council (2002) and National Research Council
(2011) and are useful when measuring quality changes, which typically affect the treatment of specific conditions.

12More precisely, let Rd,t be the set of treatments available to a patient at time t, and wr,d,t be the share of the population
with a condition that adopts treatment r at time t. Then, the average QALY at time t is: Hd,t =

∑
r∈Rd,t

wr,d,tHr,d.

This can be interpreted as the average health benefit received by the population in time period t. The average cost of
treatment is calculated similarly.

13This equation for consumer welfare is derived by taking a first-order Taylor series expansion of the utility function in Cutler
et al. (1998). One important implication of this is it assumes away the risk premia of insurance and wealth effects. This
simplification means that the marginal utility of a dollar is constant. In Appendix Section OA.C.2, we follow Lakdawalla
et al. (2017) to account for how innovation impact health risks and financial risks. The estimates from this exercise
increase the amount of consumer welfare created by innovation, but the main results are qualitatively similar.
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the base-period average treatment cost and the numerator is calculated by subtracting the consumer

welfare change from the base-period cost of treatment. Specifically, the price index for disease, d, is:

Price Indexd,t,t−1 =
Sd,t−1 −∆ Consumer Welfared,t,t−1

Sd,t−1

=
Sd,t−1 − [V SLY · (Hd,t −Hd,t−1)− (Sd,t − Sd,t−1)]

Sd,t−1

=
Sd,t
Sd,t−1

−
V SLY · (Hd,t −Hd,t−1)

Sd,t−1
. (3)

The first line of Equation 3 shows that the price index falling (being less than 1) means that consumer

welfare is rising, and vice versa. The middle line of Equation 3 provides an intuitive form of the index.

Suppose that the average treatment cost in period t − 1 is $50,000. Suppose that the diffusion of a

new treatment leads to a 0.2 increase in QALYs for the average patient, but adds $10,000 in average

treatment costs. Assuming a VSLY of $100,000, the change in consumer welfare is $10,000: $20,000

in improved quality of life, minus $10,000 in net treatment costs. The cost of purchasing a bundle,

which keeps utility constant, declined by 20% once quality changes are accounted for. The last line

of Equation 3 provides a simplified expression that demonstrates how one can separate the unadjusted

price change,
Sd,t
Sd,t−1

, from the quality improvement,
V SLY ·(Hd,t−Hd,t−1)

Sd,t−1
.

5. Data
To construct the quality-adjusted indexes, we estimate the cost and QALY of each treatment, as well as

determine the share of patients receiving each treatment. We use two main datasets: (1) Tufts CEAR

data; and (2) the Merative™ MarketScan® Research Databases.

Tufts CEAR data: The CEAR data is compiled by the Center for Evaluation of Value and Risk in

Health at Tufts University. The data compiles more than 8,000 cost-effectiveness analyses which have

been published in English and are indexed by Medline, from the years 1976–2019, though the bulk of

studies start after 1990. Each study includes at least one comparison, which is a comparison between

an intervention, often a new treatment, and a comparator, which is often a standard of care treatment.

In the case of hepatitis C, a study may include a comparison between Sovaldi versus P-Interferon and

another comparison between Harvoni versus P-Interferon. The unit of observation in the raw data is a

comparison and there are a total of more than 22,039 comparisons. The data reports the QALY and

cost for each treatment, descriptions of treatments, and a disease classification (i.e. asthma, hepatitis

C). It also includes information on the journal, author, author affiliation, funding, year published, and

country the study was performed in, among other characteristics.

Although the CEAR data contain detailed information, they are not in a form that is readily combined

with other data sources or across studies within the CEAR data. For example, a treatment may be

“Sofosbuvir, 12 weeks + pegylated interferon-alpha-2a and ribavirin, 12 weeks” or “Pan-Genotypic

direct-acting antiviral agent regimen.” We had at least two research assistants review and independently
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classify each treatment into specific pharmaceutical molecules or combinations of molecules. Accuracy

was then verified by an additional review of the independent classifications.14

To focus our analysis, we concentrate on 13 conditions where pharmaceuticals comprise most of the

treatment (or innovation), as pharmaceuticals are much easier to classify in the CEAR and to merge to

claims data, relative to procedures or other services.15 Limiting the data to these conditions leaves us

with 5,414 comparisons, out of the 22,039 initial comparisons. That is, these 13 conditions account for

about 25% of the CEAR data. Appendix Section OA.B.2 uses the Medical Expenditure Panel Survey

(MEPS) data to explore the share of total drug spending associated with drugs we classify using the

CEAR data. The drugs in the CEAR data account for at least 79% of MEPS drug spending for all

conditions except atrial fibrillation (60%).16

We keep all comparisons where two classified drugs are compared to each other,17 and both drugs have

a non-outlier QALY estimates.18 In particular, we drop 2,232 comparisons where either cost or QALY

information is missing, 197 observations with outlier costs or QALYs, and 1,522 comparisons where

one or both of the treatments is not classified. In addition, there are 375 comparisons where we could

classify at least one of the treatments as a placebo (or “no treatment”) or “standard of care.” While

these categories do not map to specific drugs, they provide information which may be useful when

comparing to drugs indirectly. In our main specification we drop the “no treatment” and “standard

of care” categories, leaving 1,088 comparisons, but results are robust to including them. In our main

sample we have 151 treatments across the 13 conditions.

MarketScan Data: After classifying each treatment, we link the CEAR data to insurance claims by

molecule. We use the Merative™ MarketScan® Research Databases from 2007-2018. The MarketScan

database contains retrospective insurance claims for a sample of commercially-insured patients who are

under-65. We limit our sample to those who are not in capitated plans and are enrolled for at least 360

days. This accounts for 220,658,074 member-years. There are two types of claims files, medical claims

and pharmacy claims. Medical claims have information on the diagnosis (characterized by International

Classification of Diseases 9th edition (ICD-9) and ICD-10 codes), the procedures performed, and the

price (this is the actual amount paid by the insurer and the member, combined). Pharmacy claims data

have information on the price paid at the pharmacy and the specific drug prescribed, by National Drug

14Focusing on the molecule level abstracts from some information, such as dose, form, or length of treatment, but this
information is not consistently included in the CEAR data.

15While we tried classifying procedures such as surgeries, the terminology in CEAR did not always map cleanly to procedure
codes in claims data.

16We use MEPS data for this calculation because, unlike Marketscan data, the MEPS data has diagnosis codes on drug
claims. For colon cancer and lung cancer we use the Marketscan because chemotherapy drugs are physician administered
and include diagnosis codes, so we can link diagnoses and drugs in the medical claims.

17Many of the observations in the CEAR data include non-drug interventions which are vague or difficult to match to
procedure codes (e.g. surgery), difficult to observe in claims data (e.g. diet and exercise booklets provided). Sometimes
there are vague drug references like “statin therapy,” which cannot easily be matched to a particular molecule.

18One common situation is the study will report the difference in QALYs or cost, but not the level of the two which leaves
missing values. Outliers are QALY estimates greater than 100, cost estimates are greater than $10,000,000. Because our
estimates are based on proportional effects, we also classify observations where the cost or QALY of one treatment is 5
times as large an another as an outlier. This is typically the case with very small QALY estimates, for example if one
treatment provides 0.05 QALYs and another provides 0.3.
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Code (NDC) code (which incorporates a molecule-manufacturer-dose-form). Pharmacy claims do not

have diagnosis or procedure codes.

To account for manufacturer rebates, we supplement the MarketScan data with SSR Health data, which

has also been used by Kakani et al. (2020) to adjust for rebates.19 See our data appendix, Section OA.B,

for more details about how we clean the CEAR data and merge it to the MarketScan data, as well as

how we incorporate rebates into estimates.

6. Methods
This section discusses how we estimate the variables in Equation 3. This includes how we estimate

QALYs using CEAR data and costs using MarketScan claims data.

6.1. Estimating QALYs from CEAR Data

Treatment level QALYs can be taken directly from the raw CEAR data for specific studies, but this is

not the preferred approach for obtaining QALY estimates for several reasons: (1) the CEAR data makes

pairwise comparisons, whereas we need estimates for all treatments; (2) the CEAR data often have

multiple observations for each treatment, necessitating some averaging; (3) there is variation in study

design, populations, and assumptions which will affect each treatment in a comparison; and (4) there

is variation in the drugs that treatments are compared to.20 We use a regression to address all of these

issues.

In the CEAR data, the unit of observation is a comparison, which we subscript with u. We reshape the

CEAR data so the comparator and intervention treatments, subscripted by c ∈ {intervention, comparator},
are separate observations that are part of the same comparison, u (e.g. we reshape the data so there

are two observations for each comparison).

Each observation also corresponds to a given treatment r and disease d. Denote the set of treatments

used for disease d as r ∈ Rd. Many different studies may contain a common treatment (e.g., Sovaldi

appears in multiple observations), and there are many studies for a given disease (e.g., there are many

comparisons and treatments for hepatitis C). To average across quality measures for specific treatments,

we use a linear regression model, that allows us to control for the different features of each study. The

specific regression is:

log(Hu,c,d) = γr,d + γu,d + εu,c,d (4)

where the dependent variable is the log of the QALY. The γr,d and γu,d are treatment and comparison-

19SSR Health, LLC collects data from drug manufacturers’ Securities and Exchange Commission (SEC) filings on revenue
net of rebates and merge that with measures of revenue gross of rebates collected by Symphony Health to estimate the
share of revenue that is rebated.

20For example, Harvoni is compared to P-Interferon and ribavirin twice; P-Interferon, ribavirin, and Sovaldi seven times;
and ribavirin and Sovaldi five times.
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specific fixed effects, respectively. The εu,c,d is the error term. We use logs because it places less weight

on outlier observations and we also think it is likely that differences across treatments and comparison

groups lead to proportional effects on health (e.g., treatment A is 20% more effective than treatment

B). However, as a robustness check we also repeat the analysis in levels and obtain similar results.

The treatment-specific fixed effect, γr,d, provides a measure of the log difference in treatments, relative

to the left-out alternative. This is the main coefficient of interest, as it provides an average relative value

of each treatment which will form the basis of our estimates of treatment QALYs. The comparison-

specific effect, γu,d, is intended to difference out observed and unobserved heterogeneity across studies

that are present in both the intervention and the comparator. As mentioned previously, it might be that

a particular comparison has a different target population, different assumptions on the discount factor,

or other study or comparison-specific factors, which will be captured with the γu,d fixed effect.

While the estimate of γr,d is key to our analysis, γr,d are estimates of proportional effects and need

to be converted into levels. To do this, we need an estimate of what they are proportional to. One

option would be to choose a value of γu,d from a particular study or choose an average of γu,d. Rather

than take these approaches, we account for observable differences across studies. Specifically, we run a

regression of the value of γu,d on the characteristics of each study to create a standardized value of γu,d

that accounts for the different characteristics of the studies (e.g., age, sex or time horizon of the study).

See appendix section OA.B.4 for additional details and robustness checks which show that results are

robust to different methods of handling comparison-specific heterogeneity.

After obtaining regression coefficients, we retransform our estimates into levels using the method pro-

posed in Duan (1983). For disease-level estimates, we calculate the average QALY by taking a quantity-

weighted average across all treatments in a given year.

The same steps can be taken to extract cost information from cost-effectiveness studies by replacing

QALYs with costs on the left-hand side of Equation 4. However we strongly prefer using the MarketScan

data to estimate costs, as cost-effectiveness studies only reflect costs at a single point in time (e.g.,

they do not capture prices falling due to patent expiration) and they only reflect costs for a particular

setting (e.g., estimates may come from very different health systems).

6.2. Estimating Costs from Claims Data

To calculate costs, denoted Cd,t, we begin by summing over all the expenditures a person has for

condition d in a given year t.21 We deflate all expenditures to 2018 dollars using the aggregate Personal

Consumption Expenditure (PCE) deflator. We include inpatient and outpatient claims in our annual

spending measure, so an innovation that offsets medical care costs will be accounted for in our cost

estimates. However, if there are quality improvements in inpatient and outpatient care over time, our

21Inpatient and outpatient claims include diagnosis codes, so for those claims we sum allowed amounts for any claims where
condition d is the first listed diagnosis. Drug claims do not include diagnosis codes, which complicates knowing which
condition a prescription treats. In our preferred specification, we include all drugs that we classify using CEAR data,
which covers most drug expenditures for our selected conditions. We also try a robustness check where we allocate all
drug claims to medical conditions to pick up drugs that are not in the CEAR. Our results do not change much.
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results will understate true quality changes.

While we compute average annual costs from the claims data, the QALYs in the Tufts are typically

measured in lifetime units. To keep units between costs and benefits consistent, we re-scale all costs by

a “lifetime scaling factor.” To compute this scaling factor, we take into account how spending evolves

over time for an individual and the expected length of life for someone with condition d. While computing

lifetime costs is challenging, we find that our main points are fairly robust to the methodological details.

First, we calculate the evolution of expenses for someone with disease d. For example, someone with

hepatitis C typically has one expensive year of treatment, then relatively few expenses thereafter (some

monitoring), whereas someone with rheumatoid arthritis typically takes expensive DMARDs for a life-

time. To measure this cost progression, we look at spending patterns over time for a large panel of

individuals with disease d, which we use to extrapolate spending in the future.

We use the cost trend from the panel of individuals to capture how costs evolve after the initial diagnosis.

To construct the net present value of lifetime cost we combine our estimate of how costs evolve with

information on the probability of dying at a given age using life tables and the age distribution of

individuals with disease d in the MarketScan data, assuming a discount rate of 3%. This information is

used to construct a scaling factor that we can use to multiply the cost of a typical year of treatment,

Cd,t, into a lifetime cost estimate. See Appendix Section OA.B.5 for a more thorough discussion of this

calculation.

7. Results
To demonstrate our methodology we begin by describing detailed results for hepatitis C and rheumatoid

arthritis. Then, we show summary results for all 13 conditions.

7.1. Detailed Results for Hepatitis C and Rheumatoid Arthritis

The left panel of Table 1 presents results for the nine highest revenue hepatitis C drugs. Column 1 indi-

cates the baseline drug which all other drugs’ QALYs are compared to. Column 2 presents estimates of

the average QALY for each drug, relative to the baseline drug. The second generation of drugs, Victrelis

and Incivek, are more effective than first generation P-Interferon/RBV: they respectively provide 0.8

and 1.4 additional QALYs relative to P-Interferon/RBV based treatment. However, these drugs were

not as effective as P-Interferon/Sovaldi, which provides 2.3 QALYs relative to P-Interferon/RBV based

therapies. The second generation of drugs exited the market in 2015 because they were less effective

than Sovaldi and anticipated falling market shares.22 Finally, the newest generation of drugs — Har-

voni, Viekira Pak, and Epclusa — are the most effective, each providing 2.7 more QALYs compared to

P-Interferon/RBV.

22“From Riches to Rags: Vertex Discontinues Incivek as Sales Evaporate.” Wall Street Journal, August 2014. “Merck stops
production of HCV drug due to low demand.” Drug Topics, January 2015.
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Table 1. QALY Estimates for Hepatitis C and Rheumatoid Arthritis Drugs

(1) (2)
Is Baseline
Treatment

∆ QALYs
from Baseline

Epclusa 0 2.687
Harvoni 0 2.764
Olysio/Sovaldi 0 2.797
P-Interferon/Incivek 0 1.350
P-Interferon/RBV 1 0.000
P-Interferon/Sovaldi 0 2.252
RBV/Sovaldi 0 1.169
Victrelis/RBV 0 0.801
Viekira Pak 0 2.763

(1) (2)
Is Baseline
Treatment

∆ QALYs
from Baseline

Actemra 0 3.119
Enbrel 0 2.122
Humira 0 2.262
Orencia 0 2.602
Remicade 0 1.880
hydrox./sulfas. 0 2.134
leflunomide 0 0.048
methotrexate 1 0.000
sulfasalazine 0 -0.256

Notes: This table presents the estimated QALYs using the CEAR data and applying the regression methodology

discussed in the text. The left panel presents results for hepatitis C, the right panel for rheumatoid arthritis. Column

1 is an indicator for the index treatment for each condition, which all other QALYs are compared to. The second

column is the QALY estimate relative to the index drug.

The right panel of Table 1 presents results for the nine highest revenue rheumatoid arthritis drugs, where

methotrexate is the baseline treatment. Enbrel has 2.1 QALYs relative to methotrexate, suggesting that

Enbrel was a large innovation at the time of its introduction. The newer generation of DMARDs, such as

Humira, Orencia, and Actemra, all have higher estimated QALYs compared to Enbrel. These estimates

are picking up the generational difference in drug quality. Furthermore, all of these newer drugs appear

to be highly effective, providing at least 2.1 additional QALYs relative to the baseline. In fact, the

QALY improvements from the newer generation of rheumatoid arthritis drugs appear to be similar in

magnitude to the QALY improvements we see from hepatitis C drugs, relative to the baseline treatment.

While each of the new innovations improve quality, the overall welfare change in the market depends

on how much these treatments are used and how costly they are. A highly effective treatment which

few people use may provide less welfare than a slight improvement which diffuses broadly. We combine

information in Figures 1 and 2 and Table 1 to estimate how average quality and costs are changing.

Quality and price index trends for hepatitis C are shown in Table 2. Column 1 of Table 2 calculates

how quantity-weighted QALYs are changing over time for the treatment of hepatitis C, relative to 2007.

In 2011, when Incivek and Victrelis enter, the average treated hepatitis C patient receives 0.79 more

QALYs than they would have in 2007. In 2014, with the emergence of Sovaldi, that number jumps to

2.2 QALYs and in 2018 it is 2.8 QALYs after the entry of Harvoni.23

The average lifetime cost is shown in column 2, which is the average annual cost of hepatitis C in a

given year multiplied by our lifetime multiplier. The average person who received hepatitis C treatment

in 2007 has an estimated lifetime cost of $41k. Column 3 presents the price index without quality

adjustment, which is the average lifetime cost of treatment in that year divided by the average lifetime

cost in 2007. The change in drug generation is reflected in the costs. Costs are roughly $42k until 2011,

23These numbers are somewhat larger than the differences in Table 1. This is because there are other treatments like
interferon (rather than P-Interferon) and P-Interferon without ribavirin that have fewer QALYs than the baseline treatment
and positive market share in 2007.
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then they rise to roughly $100,000 upon the entry of Incivek and Victrelis. Then in 2014, following the

launch of Sovaldi, the average cost jumps to $340k, an 834% increase from 2007.24 However, Sovaldi’s

market dominance was short lived. Prices dropped sharply as competitors entered at lower price points.

By 2018, prices had fallen to $49k, only 20% higher than 2007.

Table 2. Price Indexes and Changes in Welfare by Year for Hepatitis C

(1) (2) (3) (4) (5) (6) (7)

Change in
Avg QALYs

MktScan
Lifetime Costs

($1,000s)
Price Index
$0 VSLY

Price Index
$100k VSLY

∆ Consumer
Welfare

$100k VSLY
($1,000s)

Price Index
$500k VSLY

∆ Consumer
Welfare

$500k VSLY
($1,000s)

2007 0.000 41 1.000 1.000 0 1.000 0
2008 0.056 44 1.075 0.937 3 0.385 25
2009 0.057 40 0.987 0.847 6 0.288 29
2010 0.060 42 1.029 0.882 5 0.295 29
2011 0.791 101 2.467 0.530 19 -7.219 336
2012 0.850 108 2.653 0.572 17 -7.754 357
2013 0.814 95 2.329 0.336 27 -7.636 353
2014 2.231 340 8.337 2.872 -76 -18.987 816
2015 2.689 215 5.277 -1.310 94 -27.658 1,170
2016 2.695 139 3.405 -3.196 171 -29.599 1,249
2017 2.837 111 2.707 -4.243 214 -32.043 1,349
2018 2.838 49 1.204 -5.746 275 -33.548 1,410

Notes: This table presents changes in QALYs, costs, quality-adjusted price indexes, and consumer welfare, constructed

using the CEAR, MarketScan, and SSR Health datasets. Column 1 presents the difference in average QALYs relative to

2007. Column 2 presents estimated lifetime costs in each year. Columns 3, 4, and 6 present price indexes assuming the

value of a statistical life year (VSLY) is $0, $100,000, and $500,000, respectively. Columns 5 and 7 present changes in

consumer welfare. All the estimates in columns 3–7 can be calculated directly using the results in columns 1 and 2 and

using equations 2 and 3. The price indexes are also graphed in Figure 3.

24Our preferred specification averages across all years when determining the lifetime cost multiplier. As a robustness check,
we find that allowing for cost dynamics to change over time leads to lower cost growth for hepatitis C treatments. This
reflects the fact that newer treatments are curative, so future maintenance costs decline after 2014. We do not find
convincing trends for other conditions and worry that making this more flexible specification our preferred specification
would add considerable noise. Results of this robustness check are available upon request.
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Figure 3. Price Indexes for Hepatitis C and Rheumatoid Arthritis

Hepatitis C

Rheumatoid Arthritis

Notes: This figure presents quality-adjusted price indexes using various assumptions about the VSLY. A subset of these

indexes are also shown in Tables 2 and 3. These results are constructed using data from CEAR, MarketScan, and SSR

Health.

Columns 4 and 5 show the quality-adjusted price index and change in consumer welfare assuming a
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$100,000 VSLY. In addition, price indexes for $50,000, $100,000, $250,000, and $500,000 are shown

graphically in Figure 3. Given columns 1 and 2, one can construct all the other estimates in this table

or using any other assumed VSLY using equations 2 and 3. For example, in 2015, the average QALY

was 2.69 QALYs higher than in 2007 when most patients were receiving interferon based treatments

(such as P-Interferon). At a $100,000 VSLY, this represents $269,000 of welfare. Given the $174,000

difference in average costs, this represents a $95,000 gain in consumer welfare. Likewise, the index is
215−100·2.69

41 = −1.31, where numbers are slightly different in the table due to rounding. If consumers

value life more, the quality adjustment gets larger. If one assumes the VSLY is instead $500,000, the

index becomes 215−500·2.69
41 = −27.6. The price index for hepatitis C is negative in the last few years

of the sample. This indicates that the gain in health is so large that in order to maintain the same

level of utility across periods, individuals would actually need to be paid more than the price of the old

technology.

After accounting for QALY differences, prices appear to be declining with each subsequent generation of

new drugs. The second generation, in 2011-2013, is roughly 2.5 times as expensive as the first generation

of drugs, but at roughly 0.8 additional QALYs means that quality-adjusted prices are lower than the

original generation. In 2014, the introduction of Sovaldi meant a large unadjusted price increase, and

even reduction of consumer welfare at $100,000 VSLY, but at a larger assumed VSLY, this meant prices

falling further. The most recent generation of drugs both reduced costs and had higher quality leading

to very large quality-adjusted price declines.

In summary, hepatitis C is a condition which has been an innovative market in the last decade. While

the treatments have been controversial due to their high costs, the treatments appear cost-effective so

the quality-adjusted indexes are well below 1, while the high prices lead to unadjusted price indexes

above 1.

Trends for rheumatoid arthritis, shown in Table 3, contrast starkly with the trends for hepatitis C.

Column 1 calculates how quantity-weighted QALYs are changing over time for rheumatoid arthritis. In

contrast to hepatitis C, average QALYs are not rising by as much, a 0.22 increase between 2007 and

2018. Recall that the major innovations for rheumatoid arthritis took place in the late 1990s (Enbrel)

and early 2000s (Humira), and we observe relatively few innovations over our study period, as reflected

in the lack of market shares shifting in our data (Figure 2). Consequently, there is little change in

our estimated average quality of the treatments.25 As the previous results make clear, this is driven

by the lack of diffusion of these newer drugs, rather than the lack of efficacy of these treatments; the

newer generation of rheumatoid arthritis drugs have similar relative QALYs as the newest generation of

hepatitis C drugs. Column 2 shows that the average lifetime cost in 2007 for a patient with rheumatoid

arthritis is $154,000. Lifetime costs doubled during our sample period to $336,000. As discussed in

subsection 3.1, this is due to large within-molecule price increases. Drugs like Enbrel and Humira more

than doubled their prices during our sample period.

25The small change in QALYs that we observe is largely driven by the entry of Actemra, which was approved in 2010 and
coincides with a distinct jump in QALYs in 2011.
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Table 3. Price Indexes and Changes in Welfare by Year for Rheumatoid Arthritis

(1) (2) (3) (4) (5) (6) (7)

Change in
Avg QALYs

MktScan
Lifetime Costs

($1,000s)
Price Index
$0 VSLY

Price Index
$100k VSLY

∆ Consumer
Welfare

$100k VSLY
($1,000s)

Price Index
$500k VSLY

∆ Consumer
Welfare

$500k VSLY
($1,000s)

2007 0.000 154 1.000 1.000 0 1.000 0
2008 0.015 163 1.054 1.044 -7 1.006 -1
2009 0.027 158 1.020 1.003 0 0.934 10
2010 0.037 167 1.082 1.058 -9 0.962 6
2011 0.105 183 1.187 1.119 -18 0.847 24
2012 0.143 194 1.256 1.163 -25 0.792 32
2013 0.163 230 1.487 1.381 -59 0.959 6
2014 0.186 251 1.629 1.508 -78 1.025 -4
2015 0.199 289 1.873 1.744 -115 1.227 -35
2016 0.226 325 2.104 1.958 -148 1.373 -58
2017 0.231 343 2.222 2.072 -166 1.475 -73
2018 0.224 336 2.174 2.029 -159 1.449 -69

Notes: This table presents changes in QALYs, costs, quality-adjusted price indexes, and consumer welfare, constructed

using the CEAR, MarketScan, and SSR Health datasets. Column 1 presents the difference in average QALYs relative to

2007. Column 2 presents estimated lifetime costs in each year. Columns 3, 4, and 6 present price indexes assuming the

VSLY is $0, $100,000, and $500,000, respectively. Columns 5 and 7 present changes in consumer welfare. All the estimates

in columns 3–7 can be calculated directly using the results in columns 1 and 2 and using equations 2 and 3. The price

indexes are also graphed in Figure 3.

Changes in consumer welfare and quality-adjusted price indexes for rheumatoid arthritis are shown in

columns 3–7. The price indexes are also presented graphically in Figure 3. In this case, while quality

increased some, the high cost of the condition in the base period and the large price increases mean

that even after adjusting for quality, the price indexes are increasing. If one assumes a $100,000 VSLY,

prices doubled during our sample period.

7.2. Results for Other Conditions

Table 4 summarizes the 2018 results for all 13 of the conditions. It is the last row of Tables 2 and 3,

except it presents the 2007 cost rather than the 2018 cost and we present total welfare, rather than

consumer welfare, in column 7, which we discuss in section 7.4. Detailed tables and figures for the

remaining 11 conditions are available upon request.
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Table 4. Price Indexes and Changes in Welfare for Each Condition Between 2007 and 2018

(1) (2) (3) (4) (5) (6) (7)

∆ Avg QALYs
2018 - 2007

MktScan
Lifetime Costs

in 2007
($1,000s)

Price
Index
$0

VSLY

Price
Index
$100k
VSLY

∆ Consumer
Welfare

$100k VSLY
($1,000s)

Price
Index
$500k
VSLY

∆ Total
Welfare

$100k VSLY
($1,000s)

Asthma 0.002 16 1.014 1.001 0 0.946 0
Atrial Fibrillation 0.443 14 3.854 0.771 3 -11.564 44
Colon Cancer -0.040 338 0.607 0.619 129 0.666 -4
Cystic Fibrosis 0.232 622 4.232 4.194 -1,986 4.045 23
HIV 0.167 312 1.505 1.452 -141 1.237 17
Hepatitis C 2.838 41 1.204 -5.746 275 -33.548 284
Hypertension 0.039 9 0.684 0.230 7 -1.587 4
Lung Cancer 0.620 267 2.151 1.919 -246 0.991 62
Multiple Sclerosis 0.419 476 2.998 2.910 -908 2.558 42
Osteoporosis 0.033 7 1.690 1.201 -1 -0.755 3
Rheumatoid Arthritis 0.224 154 2.174 2.029 -159 1.449 22
Schizophrenia 0.113 38 0.823 0.522 18 -0.680 11
Venous Thromboembolism 0.102 6 1.308 -0.316 8 -6.810 10

Notes: This table presents changes in QALYs, costs, quality-adjusted price indexes, and consumer and total welfare,

constructed using the CEAR, MarketScan, and SSR Health datasets. Columns 1 and 2 presents the difference in average

QALYs relative to 2007 and the estimated lifetime costs in 2007 for each condition. Columns 3, 4, and 6 present price

indexes assuming theVSLY is $0, $100,000, and $500,000, respectively. Columns 5 and 7 present changes in consumer

and total welfare. All the estimates in columns 4–7 can be calculated directly using the results in columns 1–3 and using

equations 2, 3, and 6 and assuming marginal costs are constant over time.

Column 1 shows the change in average QALYs by condition. We find quality improving for all conditions

during this time period, except colon cancer (which we explain in Section 7.4). The shift toward higher

quality is consistent with Chandra et al. (2016), who find that patients shift toward higher quality

hospitals over time. However, we see a lot of heterogeneity in the change in mean QALYs. To highlight

where changes in QALYs (and costs) are coming from, Figure 4 shows market shares for six selected

conditions. Hypertension and colon cancer have relatively small changes in market shares, and few

new entrants over our sample period. Other conditions in Figure 4 may be categorized as innovative.

Osteoporosis has the entry of denusumab and cystic fibrosis has the entry of Orkambi. Atrial fibrillation

and multiple sclerosis have multiple new entrants that take considerable market share.
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Figure 4. Market share for top treatments over time

a. Atrial Fibrillation b. Colon Cancer

c. Cystic Fibrosis d. Hypertension

e. Multiple Sclerosis f. Osteoporosis

Notes: This figure presents the market shares of patients by year for the highest volume drugs for selected condition across

our entire sample period in the MarketScan data.
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Figure 5. Prices for the Top Five Treatments for Selected Conditions

a. Atrial Fibrillation b. Colon Cancer

c. Cystic Fibrosis d. Hypertension

e. Lung Cancer f. Multiple Sclerosis

Notes: Figure 5 presents the average price per year of the five highest volume drugs in our sample for various conditions

(except lung cancer where we focus on newer entrants). Drugs do not have prices in all years because either they have not
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entered the market yet or they stop being used. Prices are from the MarketScan data and are average costs of that drug

for a patient who takes that drug in a calendar year. They are not scaled to lifetime costs. The drug prices are deflated

to 2018 dollars using the PCE deflator and adjusted for rebates using SSR Health data.

One important takeaway from Column 1 is that two things need to happen for significant quality

improvement: (i) the condition needs to have new treatments which make large improvements in quality;

and (ii) these treatments need to diffuse. Rheumatoid arthritis has highly effective new treatments, but

they were mostly introduced prior to our sample period and the market shares for treatments are fairly

constant, so quality improvements are relatively small. On the other hand, osteoporosis had the entry

and diffusion of denusumab, but we estimate that denusumab has only an incremental improvement in

quality, so quality gains are modest. It is worth noting that capturing these quality changes requires both

sources of data, to measure both the quality improvement (i.e, cost-effectiveness studies) and diffusion

(i.e., claims data).26

Columns 3-6 of Table 4 show the changes in consumer welfare and price index values for each of the

conditions in 2018. Price trends differ considerably for each condition. To explain these results, Figure

5 shows prices for the top five treatments for selected conditions.

Within conditions categorized as “non-innovative” markets, there are conditions where costs are rising

and those where costs are falling. Rheumatoid arthritis, which we showed in Figure 2, is the clearest

example of costs rising. There are rapid within-molecule price increases and almost no change in the

treatment mix. Hypertension, colon cancer, and schizophrenia have multiple drugs come off patent

during our sample period and little entry. These conditions have declining unadjusted price indexes.

For this latter group, consumer welfare increases mostly because prices are falling, rather than quality

improving.

Atrial fibrillation, cystic fibrosis, and lung cancer, along with hepatitis C, are “innovative” markets. All

four of these conditions have new entrants that enter at price points considerably above other treatments

in the market (Figure 5). For atrial fibrillation, anticoagulants such as rivaroxaban and apixaban, entered

the market in 2011 and 2012, respectively, and replaced the much cheaper warfarin. We estimate these

drugs have a 0.1 to 0.4 QALY improvement over warfarin. Indeed, in 2019, the American College

of Cardiology and the American Heart Association recommended these newer anticoagulants as the

preferred drug class over warfarin (January et al., 2019), which can also be seen in their large increases

in market share (Figure 4). Because these treatments cost $1,000-3,000, which is considerably more

than warfarin, the unadjusted price index for atrial fibrillation nearly triples during our sample period

(Column 3 of Table 4). However, because the quality improvements would be worth $10,000-$40,000

(assuming $100,000 VSLY), atrial fibrillation has quickly declining quality-adjusted price indexes.

Cystic fibrosis is an especially interesting case of an innovative condition. Cystic fibrosis costs are partly

26Without merging cost-effectiveness studies to claims data, as in the top-down approach of Dunn et al. (2022), the CEAR
data would have suggested that rheumatoid arthritis was highly innovative as the CEAR data suggests that the new
DMARDs have large quality improvements over older generations of drugs. Likewise, the claims data show large changes
in market share for osteoporosis, but, on their own, the claims do not provide proper context to assign quality.
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driven by a very high cost entrant, Orkambi. Orkambi was controversially priced at least $150,000 per

year and has taken over about 20% market share by 2018.27 Because of this, costs for cystic fibrosis

quadruple in our sample period, where we estimate lifetime costs are over $2.5 million by 2018.28

However, Orkambi was viewed as a breakthrough therapy and indeed we estimate that it adds 0.89

QALYs compared to tobramycin, a sizeable improvement. While cystic fibrosis costs are rising due to

high quality innovations, our framework still finds rapidly increasing quality-adjusted price indexes (Table

4). The VSLY assumptions we make suggest that the large improvement in quality are not worth the

cost growth, so consumer surplus falls sharply. Indeed, one would need to assume a VSLY of over $8.7

million for consumer welfare to be improving for cystic fibrosis during our sample period.29

Lung cancer, multiple sclerosis, and HIV follow a similar pattern to cystic fibrosis.30 They are clearly

innovative with multiple new entrants yielding large quality improvements. However, these new entrants

are very expensive. For these cases, despite the quality improvements (rising QALYs), the costs are

rising rapidly enough that quality-adjusted prices are still rising and consumer welfare is falling.

While we caution against extrapolating outside the sample, in Appendix Table OA1, we aggregate across

conditions, weighted by spending. The unadjusted price index rises by 75%, while the $100,000 VSLY

index rises by 47% — a reduction of 1.6 percentage points from the compound annual growth rate. At

$500,000 VSLY, the index falls by 65%.

In summary, we have examined conditions where it would be difficult to measure the quality of treatment

using other methods. Our methodology finds a lot of heterogeneity in trends across conditions, but fairly

large quality adjustments for nearly all conditions, suggesting that quality-adjusted prices are growing

more slowly than indexes that do not account for quality.

7.3. Robustness checks

We do a number of other robustness checks that we describe in this section, though we leave many of

the details to the online appendix.

QALY estimates: There are a number of reasons why we may be overstating or understating true

quality changes.31 We think the most sensible approach is to see how our results change if we assume

27For example, see “A Drug Costs $272,000 a Year. Not So Fast, Says New York State.” New York Times, June 2018. We
find in the MarketScan data the average cost of Orkambi was closer to $150,000 per year.

28Prices for other cystic fibrosis drugs doubled or tripled in price during this time, which also factors in as Orkambi only
accounts for 20% market share.

29One can calculate this for every condition using the information in Table 4. For the consumer to be indifferent, the value
of health improvements would equal the change in costs: V SLY · ∆ Avg QALYs = ∆ Costs. For cystic fibrosis, the
change in QALYs is 0.232. The change in costs is 622k · 4.232 − 622k = 2, 010k. This number is much larger than
the number we discuss in the introduction. In the introduction, the calculation is specifically focused on Orkambi. The
number in this section is for cystic fibrosis, generally. The sizeable within-molecule price increases for other drugs increase
costs, but not quality, which makes the breakeven VSLY much higher.

30We drop Pre-Exposure Prophylaxis (PrEP) treatments, such as Truvada, from our analysis of HIV because they are
preventative innovations rather than treatment innovations. However, we note that PrEP are important innovations for
HIV during our sample period.

31For example, we could be overstating the value of innovation if there are publication biases leading to more QALYs for
new treatments (for example p-hacking or conflicts of interest, though we try to control for conflicts of interest below).
On the other hand, we are only capturing the quality changes for a discrete set of treatments, while ignoring the potential
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we are off by a factor of 2. Specifically, we multiply our estimated QALYs by two (Table OA2) or by one

half (Table OA3). For the price index calculation, re-scaling QALYs is isomorphic to assuming different

VSLYs. Hence, the impact of this robustness check is similar to what we find when we change the

VSLY assumption. The main qualitative results are similar when we change the VSLY assumptions in

our main tables and the same is true when we change QALY estimates.

We do a number of other robustness checks to test the sensitivity of our QALY estimates to various

assumptions and modelling choices. One important robustness check is to add weight to studies which

an expert Tufts reviewer rates to be of higher quality, and studies conducted by authors with academic

affiliations. We also lower the weight on studies authored or sponsored by industry (Table OA4). While

our main estimates focus on the primary treatment class, we include multiple classes of treatments for

conditions and results are similar.32 We also do a number of robustness checks on the CEAR quality

regressions (Equation 4) where we run the regression a number of different ways (e.g. in levels, not

controlling for heterogeneity, etc.) (Table OA7). We also pull in hundreds of additional cost-effectiveness

studies by including broader treatment categories like “no treatment,” “placebo,” “standard of care,”

and “usual care,” among other terms. This potentially adds some noise, but also adds 375 additional

comparisons to the regressions (Table OA7). None of the robustness checks mentioned in this paragraph

change our results considerably.

One criticism of cost-effectiveness studies is that they do not account for the insurance value of inno-

vation (Lakdawalla et al., 2017). For example, health shocks can create financial risks (lower earnings

or high medical bills) and health risk (people get sick, which lowers utility). Entry of new treatments

can impact the size of these risks and the overall effect is ambiguous (expensive innovations may reduce

health risk, but increase financial risk). However, risk is not accounted for in our baseline model, which

is standard in the cost-effectiveness and the quality-adjusted price index literatures. In Appendix Sec-

tion OA.C.2, we allow for these risks (and allow for insurance to mitigate financial risks), following the

framework in Lakdawalla et al. (2017). We find that the growth in consumer welfare is higher when we

account for these risks. However, even with these higher consumer welfare estimates due to more choice,

it remains the case that innovation appears to be lowering consumer welfare for several conditions.

Another criticism of cost-effectiveness studies, raised by Lucarelli et al. (2022) and others, is that cost-

effectiveness studies may understate the value of new treatments if there is heterogeneity in preferences or

differences in treatment effectiveness. For example Sovaldi was most effective for only certain genotypes.

Many of the studies in the Tufts focus on the subgroups where the new treatments are most effective

(e.g. a specific genotype of hepatitis C or those where methotrexate was uneffective for rheumatoid

arthritis). If those are the only patients who are taking the new treatments (and pure preference

heterogeneity is minimal) then our results should be accurate – the lack of diffusion among subgroups

quality improvements of other spending (e.g., physician or hospital spending). This would lead to us to understate results
as we are ignoring quality improvements from new treatments, tests or imaging, but capturing cost growth for those
services.

32For example, rheumatoid arthritis has some comparisons between nonsteroidal anti-inflammatory drugs (NSAIDs) which
are not directly or indirectly compared to DMARDs, as they are often used as a complement to DMARDs. This increases
the number of treatments from 151 to 194.
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which the new drug does not target would be reflected in no change in health for that subgroup. If a

broader range of patients are taking the new treatments, we may be overstating consumer welfare gains.

If consumer taste is important or the Tufts’ studies average over all individuals including less efficacious

subpopulations, then we may be understating the consumer welfare gains. We have tried robustness

checks (available upon request) where we increase welfare proportional to the number of new entrants,

reflecting additional heterogeneity in treatment effectiveness. Even with relatively large assumptions

about the welfare gains, we still find consumer welfare falling for many innovative conditions.

Cost estimates: In Appendix Section OA.B.5, we test the sensitivity to our lifetime cost estimates.

While we try a number of different modelling choices, the widest range of estimates are observed when

assuming all treatment costs occur in one year versus assuming treatment costs are constant (only

the discount factor and life tables determine the lifetime scaling factor). We observe in our data that

neither of these assumptions hold.33 The upper bound (constant costs) is 23-28 times the lower bound

(one year of costs), so this is a very wide range. In both cases, we still see some innovative conditions

with consumer welfare falling, and some conditions where price indexes are falling because of quality

adjustments. However, with such a wide range of assumptions the number of conditions with falling

price indexes and the magnitudes vary considerably.

Another concern is whether new innovations offset other costs, reducing future costs either for that same

condition or other conditions.34 For example, innovations for osteoporosis may reduce costs associated

with broken bones. We check for cost offsets in a number of ways and results are available upon request.

First, we use the MarketScan data to check whether future costs change over time. For example, has

the five year cost of having hepatitis C changed over time? As another alternative, we use a regression

methodology from Trogdon et al. (2008) which allocates spending across conditions. The methodology

allocates spending across all conditions, regardless of the specific diagnosis code on a claim, so if a drug

for osteoporosis reduces the average cost of an osteoporosis patient (e.g., through fewer or less severe

broken bones for these patients), then the methodology would suggest the cost of having osteoporosis

is falling over time. Finally, we look at studies published by the Institute for Clinical and Economic

Review (ICER) for evidence of cost offsets. We find limited evidence of cost offsets for most of the

conditions. However, the first methodology and the ICER reports suggest that there are large cost

offsets for hepatitis C. These drugs are curative and reduce long-term costs considerably. For the

remaining conditions, we do not find compelling evidence of offsets using the first two methodologies.

The ICER reports do include some cost offset for osteoporosis drugs and reduced fracture expenditures

and reduced expenditures for bleeding associated with replacing warfarin with apixaban and rivaroxaban.

These results suggest that our cost estimates for hepatitis C, osteoporosis, and atrial fibrillation may

be overstated, but these are mostly conditions where we are finding that consumer welfare is already

increasing.

33One year of costs is an especially extreme assumption for conditions where treatments are taken indefinitely, like hyper-
tension or rheumatoid arthritis. Constant costs is an extreme assumption for conditions where treatments are curative
(hepatitis C) or costs are concentrated in one year, like cancers whose costs are mostly surgeries and chemotherapy.

34We include non-drug spending in our cost estimates. Therefore, if a new innovation reduced non-drug spending within
the condition, our main estimates would account for that cost offset.
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Finally, in Appendix Section OA.C.3 we explore how market expansion impacts our results. For example,

if a new drug enters or prices fall due to patent expiration, this may cause more consumers to be treated.

We find little evidence of market expansion when drugs lose patent protection. We find more evidence

of market expansion for innovative conditions. However, the impact on consumer welfare is mixed.

Consumer welfare is lower in markets where highly effective new drugs enter that are not cost-effective.

This lowers consumer welfare, though it increases the number of QALYs produced. In other cases

consumer welfare increases, such as when new treatments are cost-effective, relative to no treatment.

Market expansion has interesting dynamic effects on welfare for hepatitis C where an earlier wave of

curative treatments reduces the number of patients treated in 2018. This surprisingly reduces the

number of QALYs produced in 2018. Averaging across all these cases, our main results are qualitatively

quite similar to results that account for potential expansion effects.

7.4. Total Welfare, Producer Surplus and Long Run Effects

While we find consumer welfare is falling for many innovative conditions, we caution that these innova-

tions may not be reducing total welfare if drug manufacturers are profiting off of the high prices. In this

subsection, we do a back-of-the-envelope calculation for per-patient total welfare and producer surplus.

We define average producer surplus as the difference between the revenue for the basket of treatments

Sd,t and the marginal cost of producing those treatments, mcd,t:

∆Producer Surplusd,t,t−1 = (Sd,t − Sd,t−1)− (mcd,t −mcd,t−1), (5)

where mcd,t is the marginal cost of production for the average bundle of treatments for disease d, at

time t. This standard definition of producer surplus ignores the fixed cost of research and development.

Therefore, the interpretation of cost estimates is that we are measuring the costs of these new treatments

after entry. Others, such as DiMasi et al. (2003, 2016), estimate the cost of developing new treatments,

which we discuss later.

Adding together consumer welfare from Equation 2 and producer surplus from Equation 5 provides a

measure of per-patient total welfare:

∆Total Welfared,t,t−1 = V SLY · (Hd,t −Hd,t−1)− (mcd,t −mcd,t−1). (6)

In our baseline case, we assume that the marginal cost of production is constant over time. This

simplifies the change in total welfare from Equation 6 to be V SLY · (Hd,t − Hd,t−1), which is the

change in the average health benefit.35 36 We think this assumption is a lower bound on marginal

35This total welfare calculation assumes that consumer and producer surplus are weighed equally. Policymakers likely differ
in the weight they place on producer surplus. Our consumer welfare estimates show total welfare if no weight is placed
on producer surplus, so readers can average between these estimates to see how the weighting impacts results.

36This formulation is similar in spirit to a social planner model where the only good being allocated is health. The social
planner can redistribute wealth and ultimately wants to maximize units of health being created. In that framework, total
welfare is simply the health produced (after netting out any costs of production).
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costs, as newer drugs are likely more expensive to produce (especially biologics). This means we will

likely be overstating the total welfare gains. However, we think this bias is small as the marginal cost of

drug production is generally low, especially relative to the price of the treatments. In Appendix Table

OA5, we present results where we assume that marginal costs are 20% of the price we observe in the

data (which we think is extreme) to show how this assumption impacts our findings.37

Column 7 of Table 4 presents results for total welfare. In our framework, total welfare is simply the

health improvement multiplied by the VSLY, so it is $100,000 multiplied by column 1. For rheumatoid

arthritis, consumer welfare is falling because prices are rising, but those high prices are profits for drug

companies, so per-patient total welfare is rising during our sample period.

Interestingly, the one situation in our framework where we see total welfare falling is after generic

entry (of a relatively lower quality treatment).38 This is exemplified by colon cancer where consumers

substitute from higher quality bevacizumab to lower quality older generation drugs (capecitabine and

oxaliplatin) once their patents expire (see panel (b) of figures 4 and 5). While this is exemplified by

colon cancer, it is not the only case where this pattern emerges. Hypertension had lower average QALYs

from 2008-2011 relative to 2007 because relatively lower quality amlodipine’s patent expired in 2007.

Its price fell and it gained market share (panel (d) of figures 4 and 5). However, for hypertension this

decline was short lived as slightly newer and higher quality drug, losartan, had its patent expire in late

2009 and it gained market share, raising average QALYs.

Our results for colon cancer, hypertension, and schizophrenia also demonstrate how, in the long run,

patents will expire and prices decline. The shift to increasing consumer welfare and a decline in pro-

ducer surplus when generics enter is part of the product life cycle of pharmaceutical innovations. New

innovations are often protected by patents, leading much of the initial surplus to accrue to producers,

which later shifts to consumers when patent protection is lost.

To better demonstrate the long-run impacts of these innovations, Table OA6 in the appendix presents

results from a counterfactual where we reduce the prices of all on-patent drugs by 85% (from their 2018

prices) while holding market shares constant at 2018 levels. This assumes that there would be no further

innovation or diffusion after 2018, but would demonstrate how the current set of innovations impact

consumer welfare once all those innovations go off patent. In this counterfactual, consumer welfare is

higher than in 2007 for all conditions, except cystic fibrosis. That is, in the long run these innovations

improve consumer welfare.

37We may be understating the cost of new innovations if there is considerable spending on advertising.
38In a standard economic model, the entry of a lower cost product would increase quantity supplied and reduce deadweight

loss, which our measure of per-patient welfare abstracts from. While we document some substitution among drugs taken,
we do not find any compelling evidence in the MarketScan data that more people are receiving treatment after generic
entry. In Appendix Section OA.C.3, we allow for market expansion and we still find negative total welfare for colon cancer.
This is in line with an empirical literature which has found either no extensive margin effect or even that generic entry
actually reduces market shares (possibly due to reduced advertising) (Duflos and Lichtenberg, 2012; Castanheira et al.,
2019).
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7.5. Which Treatments Are Driving Our Results?

In this section we ask: which treatments are responsible for the biggest changes in consumer welfare? To

measure how each treatment impacts welfare, we measure the difference between the observed welfare

in 2007, relative to the counterfactual welfare where we introduce a particular treatment at its 2018

levels (i.e., prices, quality, and market share), holding all other treatments constant at the 2007 level.

We do this for one treatment at a time. We make a distinction between old and new market share,

because a drug diffusing changes costs and quality, whereas we assume that a drug that does not diffuse

affects welfare through price changes only.39 Specifically, for newly obtained market share (diffusion)

we replace the 2007 average bundle with the drug’s 2018 price and quality, to capture how diffusion

impacts both price and quality. For market share that was retained from 2007, we only replace the price

of that drug, as there is no change in the drug taken, so it should not impact quality.

The top panel of Table 5 shows the drugs which contributed to the biggest consumer welfare increases

assuming a VSLY of $100,000. The QALY column shows the QALY difference between that drug and

the 2007 basket average. The price in 2007 and 2018 are the prices of an annual course of treatment

for only that drug (i.e. not including inpatient and outpatient spending on the condition). If the price

in 2007 is missing, then the drug was not in the market in 2007.

39For a hypothetical individual taking the drug in 2007 and 2018, the relevant welfare counterfactual is simply how the
price has changed. This hypothetical consumer should not expect a quality change as they are taking the drug in both
periods. Therefore, for retained market share, we only revert the price to 2007 prices. For a hypothetical consumer taking
a new treatment in 2018, the counterfactual is not that same drug in 2007 as they were not taking the drug in 2007.
Therefore, we use the average bundle in 2007 as the comparison for newly obtained market share.
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Table 5. (a) Drugs which account for biggest consumer welfare gains - $100,000 VSLY

Rank Condition Drug QALYs Price in 2007 Price in 2018
1 Atrial Fibrillation apixaban 0.8 1386
2 Hypertension losartan 0.1 438 44
3 Hypertension hydrochlorothiazide/losartan 0.2 469 56
4 Hepatitis C Harvoni 2.9 11881
5 Atrial Fibrillation rivaroxaban 0.6 1312
6 Asthma fluticasone 0.0 238 75
7 Hepatitis C Epclusa 2.8 12741
8 Venous Thromboembolism rivaroxaban 0.1 1008
9 Venous Thromboembolism apixaban 0.2 1045
10 Schizophrenia aripiprazole 0.5 3081 1351

(b) Drugs which account for biggest consumer welfare reductions - $100,000 VSLY

Rank Condition Drug QALYs Price in 2007 Price in 2018
1 Rheumatoid Arthritis Humira 0.9 11978 30773
2 HIV Stribild 0.1 21271
3 Multiple Sclerosis dimethyl fumarate 0.4 57127
4 Rheumatoid Arthritis Enbrel 0.7 12792 24846
5 Multiple Sclerosis ocrelizumab 0.7 75285
6 Multiple Sclerosis interferon beta1a 0.1 18767 59880
7 Cystic Fibrosis Orkambi 0.9 157703
8 Multiple Sclerosis fingolimod 0.8 60068
9 Multiple Sclerosis glatiramer -0.2 16556 26667
10 Multiple Sclerosis natalizumab 1.3 18425 67121

Notes: This table presents the 10 drugs which contribute the most to consumer welfare gains and reductions across all

the drugs and conditions in our sample. To calculate this, we calculate the difference in consumer welfare between a select

counterfactual in 2018 and the 2007 basket average. The counterfactual for 2018 is constructed using the prices, quality,

and market share of the select treatment at the 2018 level, holding all other treatments to the 2007 level. The QALYs

column is the difference in QALYs between the drug and the 2007 basket average for that condition. The prices in 2007

and 2018 are the annual average price we observe for that drug only.

There are two types of drugs which account for the biggest increases in consumer welfare during our

sample period. First, new entrants which are highly effective, not too costly, and take considerable

market share. Harvoni and Epclusa for Hepatitis C and rivaroxaban and apixaban, for both atrial

fibrillation and venous thromboembolism, all provide substantial quality improvements while not being

significantly more expensive than their comparators.40

The other type of drug which drives consumer welfare improvements in our sample are widely used drugs

which go off-patent, reducing costs considerably. These include fluticasone for asthma, aripiprazole for

schizophrenia, and losartan for hypertension.

Panel (b) of Table 5 shows the drugs which reduce consumer welfare the most. There are two types

of drugs which reduce consumer welfare: high cost drugs which raise their prices and new innovations

whose high cost exceeds the quality improvement. Examples of drugs that raise their price considerably

include Humira, Enbrel, and interferon beta1a.

40The QALYs for this comparison are larger than the discussion in Section 7.2 because in that table we were comparing
these drugs to warfarin, whereas in this section we are comparing them to the 2007 average.
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An example of a new innovation whose costs exceed the benefit of quality improvement is Orkambi.

As discussed above, the quality improvement for Orkambi is large, which helps explain why insured

individuals would use it, but consumer welfare is highly negative. Ocrelizumab, dimethyl fumarate, and

Stribild are additional drugs which we estimate as being high quality, but their costs are large enough

that our methodology suggests the costs are not worth the benefits for consumers. To explore this more,

we isolate the impact of new innovations in the next section.

8. How Does Innovation Affect Markets?
In this section we focus on how innovation, specifically the entry of new treatments, impacts markets. To

do this, we compute a counterfactual where we remove new entrants from the data. This counterfactual

isolates the effects of innovation, whereas our earlier results included within-drug price changes which

are large in many cases. We begin with an exercise that ignores changes in quality and asks: how much

of the growth in costs is due to new entrants? Next, we consider both cost and quality changes to

examine how new entrants shape consumer, producer, and total surplus.

8.1. What Share of Spending Growth is Due to Innovation?

A number of papers in the health literature attempt to measure the contribution of innovation on

spending growth (Chernew and Newhouse, 2011). Given the difficulty of the problem, researchers often

follow Solow (1957) and control for measurable drivers of spending (e.g., age, insurance, price, and

income), and the residual is attributed to innovation. Instead, for our subset of conditions, we are able

to identify and track new treatments directly.

The thought experiment we have in mind is removing all “new” drugs from the market, where treatments

not in the market in 2007 are categorized as “new”, and the rest are categorized as “old.” We then

need to make assumptions about which drugs those patients would have taken in the absence of the

new drugs and counterfactual prices for old drugs. We reallocate all the market share from new drugs

to old drugs in proportion to the old drug market share in 2018. We keep the old drugs at their 2018

prices.41

Table 6 presents results. Column 1 presents our baseline results for how much costs grew in our data

without differentiating between innovation and within-drug price growth (Table 4). The average cost of

rheumatoid arthritis grew by $181k in our data. Column 2 reports the cost growth due to innovation (i.e.,

we report the difference between the baseline cost growth and the counterfactual without innovation).

For rheumatoid arthritis, only $10k of that cost increase was due to innovation (Actemra). Hence,

innovation only accounts for 6% of the total rheumatoid arthritis cost growth in our data (column 3).

As shown above, most of the cost growth for rheumatoid arthritis due to within-drug price changes,

rather than new drugs entering at higher price points.

41The proportional substitution assumption is consistent with a type 1 extreme value error assumption widely used in
discrete-choice models. Using 2018 prices (rather than 2007 prices) better captures changes in the market that would
likely have occurred even in the absence of innovation, like the old drugs coming off patent and general inflation. If prices
in the absence of new drugs would have been higher in the counterfactual, due to reduced competition, then our estimate
of any welfare gains due to innovation will be understated.
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There is a lot of heterogeneity across conditions. Hypertension had no new drugs in the CEAR data, so

none of the cost growth was driven by innovation. Hepatitis C only has new drugs (no old treatment is

used in 2018), so innovation accounts for 100% of its cost growth. Costs for venous thromboembolism

drugs would have fallen in the absence of innovation, as some treatments went off patent, so innovation

accounts for more than 100% of the cost growth we observe.

While we make no claim that these conditions are representative, we take a quantity-weighted average

across conditions to compute aggregate measures reported on the bottom of Table 6. Our average cost

growth across all conditions is $18k during our sample period. The counterfactual cost growth due to

innovation is $4k. Therefore, we find that about 23% of cost growth during this sample period is due

to new innovation. This estimate on the lower end of the range in the literature measuring innovation

as the residual of cost growth that cannot be explained by other factors.42 This is likely a lower bound

for these conditions, as we only focus on innovations that we can measure and do not account for

innovations which occurred slightly before our sample period (e.g., rheumatoid arthritis drugs).43

Table 6. Counterfactual: Removing All New Drugs

(1) (2) (3) (4) (5) (6)

Baseline
Cost

Growth
2018 - 2007

($1,000s)

Cost
Growth
due to

Innovation
($1,000s)

Share of
Cost

Growth
due to

Innovation

∆ Consumer
Welfare
due to

Innovation
$100k VSLY

($1,000s)

∆ Producer
Surplus
due to

Innovation
($1,000s)

∆ Total
Welfare
due to

Innovation
$100k VSLY

($1,000s)

Asthma 0 0 0.292 0 0 0
Atrial Fibrillation 41 8 0.196 67 8 75
Colon Cancer -133 6 -0.048 -5 6 1
Cystic Fibrosis 2,009 560 0.279 -541 560 19
HIV 158 80 0.505 -73 80 7
Hepatitis C 8 8 1.000 276 8 284
Hypertension -3 0 0.000 0 0 0
Lung Cancer 308 278 0.904 -216 278 62
Multiple Sclerosis 950 192 0.202 -174 192 18
Osteoporosis 5 2 0.505 0 2 3
Rheumatoid Arthritis 181 10 0.057 -4 10 7
Schizophrenia -7 3 -0.415 1 3 3
Venous Thromboembolism 2 2 1.049 5 2 7

Aggregate 18 4 0.229 1 4 5

Notes: Column 1 presents cost growth estimates without the counterfactual. Column 2 is the amount of cost growth

due to innovation. This is calculated by determining the counterfactual where we replace all new drugs with old drugs in

proportion to old drug market share in 2018. We then calculate the cost growth between 2007 and the 2018 counterfactual.

Column 2 presents the difference between the cost growth we observe and this counterfactual. Column 3 then computes

the share of cost growth that is due to innovation. Column 4 presents the change in consumer welfare due to innovation.

Column 5 presents producer surplus which is the same as column 2 as we assume marginal costs are constant. Column 6

presents the change in total welfare due to innovation, which is just $100,000 multiplied by the change in QALYs due to

innovation (not shown).

42For example see Newhouse (1992) and Smith et al. (2022). It is also closely in line to Dunn et al. (2023) who calculates
the correlation between CEAR studies and cost growth by condition to determine the share of growth due to innovation.

43About half of the total cost growth is due to within-molecule price growth, like Enbrel and Humira which raised their
prices substantially. Changes in non-drug costs account for the remaining portion of cost growth.
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8.2. What Share of Surplus Goes to Consumers and Producers?

One important question in the innovation literature is what share of surplus is captured by the innovator

(Nordhaus, 2004). As noted by Nordhaus (2004), most of this literature is theoretical as measuring the

welfare effects of innovation is notoriously difficult.44 Columns 4, 5, and 6 of Table 6 show the change in

consumer, producer, and total welfare due to innovation applying the same counterfactual as in Section

8.1 and assuming $100,000 VSLY for each calculation. Given our constant marginal cost assumption,

cost growth due to innovation (Column 2) is also the change in producer surplus due to innovation. We

present results using other VSLYs and assumptions about marginal costs in the appendix.

Recall that for venous thromboembolism, we estimate that consumer welfare increased by $8,000 over

the sample period (Table 4, column 5). In column 4 of Table 8.1 we find that, $5,000 of consumer

welfare is due to the entry of new drugs, the other $3,000 is due to compositional changes for old drugs

and prices declining due to patent expiration. Producer surplus rose by $2,000 due to innovation so

total surplus due to innovation is $7,000 higher. Therefore, we estimate that producers captured about

29% of the surplus from innovations in 2018 for venous thromboembolism.

For cystic fibrosis, consumer welfare falls by $541,000 due to the entry of Orkambi.45 Total surplus

increases by $19k, but producer surplus grows by $560,000 due to Orkambi. Hence, producers received

2,947% of the surplus in the cystic fibrosis market. As this table, which strips out within-drug price

growth, demonstrates, this result is also not unique to cystic fibrosis. Six of our 13 conditions have

lower consumer welfare in 2018 because of those new entrants (and we see this with Sovaldi in 2014,

in Table 2 as well).46

We think that this finding, where consumer surplus is falling due to innovation, is likely a feature that

is unique to health care markets. Without distortions, a standard model of demand would suggest that

an innovation would not diffuse if its price was so high that it lowered consumer welfare. However,

distortions such as insurance, formulary design, uninformed consumers, provider incentives, or physician

detailing, may lead consumers to purchase a drug which is not cost-effective. Indeed, the diffusion of

Orkambi is not surprising as the average consumer in our data only pays $1.5k per year out-of-pocket

for Orkambi. Hence, welfare from the point of view of an Orkambi user rises significantly, while the

costs of Orkambi are spread across other enrollees in that insurance plan.

While we view this result as unconventional, it is consistent with the cost-effectiveness literature. Recall

from Section 4 that when a treatment is not cost effective, that means that it would lower consumer

surplus if it replaced its comparator. Indeed, all of the cost effectiveness studies for Orkambi in the

CEAR data find that it is not cost effective at any conventional VSLY, yet Orkambi diffuses broadly.

Even outside of the context of our model (and assumptions), one should expect to find falling consumer

44Philipson and Jena (2006); Jena and Philipson (2008); Garrison et al. (2024) also estimate the share of surplus to
consumers and producers.

45In Column 5 of Table 4 we find that consumer welfare for cystic fibrosis falls by $1.99 million. The difference is that
the counterfactual in this section ignores within molecule price growth, and the remainder of the reduction in consumer
welfare is because other cystic fibrosis drugs raise their prices considerably.

46It is important to note that total welfare is rising in all of these cases. These drugs greatly improve the quality of care
for patients and are quite profitable for manufacturers.
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surplus simply by taking these cost effectiveness studies at face value. Indeed, many of the innovative

treatments which we estimate lower consumer welfare have studies that show that they are not cost-

effective.

There are a number of interesting implications from this result. First, consumer surplus falling due

to innovation means that producers are receiving more than 100% of the surplus. A famous result in

innovation economics is that patents provide insufficient incentives for innovation, as the innovator is

not able to capture all the consumer surplus (and monopoly pricing creates deadweight loss) (Arrow,

1962; Nelson, 1959). Our results show that 100% is not an upper bound, if distortions lead higher

quality products with negative consumer surplus to diffuse.

In theory, producers capturing more than 100% of the surplus from innovations could lead to socially

inefficient levels of R&D spending, as profit incentives could cause firms to over-invest in R&D (beyond

the socially optimal level). To explore this more thoroughly, in Appendix Section OA.C.1, we do a

rough calculation of aggregate (rather than per-patient) welfare gains per new treatment and extend

the benefits over the lifecycle of a new treatment. We find our total welfare estimates are an order of

magnitude larger than the R&D costs estimated in DiMasi et al. (2016). This suggests that the benefits

of these innovations are well worth the costs of R&D, in the aggregate.

Second, our results have important implications for pricing policy that can impact welfare in the U.S. and

worldwide (Ho and Pakes, 2024). Some countries in the Organisation for Economic Co-operation and

Development and notably the United Kingdom’s National Institute for Health and Clinical Excellence

often restrict medicines if they do not meet a specific cost effectiveness threshold. In the context of our

framework, this is loosely equivalent to imposing that new innovations increase consumer (not total)

welfare (Jena and Philipson, 2008). Our results show that this restriction is likely binding, which is

consistent with evidence that these drugs are blocked or diffuse more slowly in other countries (Kyle

and Williams, 2017).47

Finally, Schumpeterian profits can be fleeting. For example, Sovaldi’s entry in the hepatitis C market

lowered consumer welfare (Table 2), so producers were receiving more than 100% of the surplus in

2014. However, with the entry of Harvoni, Epclusa and Viekira Pak, prices fell rapidly and producers

only received 3% of the surplus by 2018. Colon cancer is another case where the fleeting nature of

profits due to innovation are on display in our results. Lucarelli et al. (2022) document how prices

and quality change for colon cancer treatments from 1993-2005 when there are numerous new, higher

quality entrants and a rapid rise in the cost of treating colon cancer. Our study complements theirs by

documenting more recent trends for colon cancer treatments from 2007-2018, with the major change

being the earlier innovations going off patent and prices for these treatments falling considerably.

47This point also makes clear an important caveat that pharmaceutical prices for the commercially insured in the United
States are much higher than in other countries or public payers within the United States (Anderson et al., 2003). When
viewed through the lens of incentives for innovation, our results are likely an upper bound on those incentives.



37

9. Conclusion
If spending increases are due to technological advances that are improving or extending life, then they

may be “worth it.” However, determining how specific innovations are driving spending growth and

changes in quality presents difficult measurement challenges. We use thousands of cost-effectiveness

studies combined with information on millions of individuals to take a granular look at the causes of

quality improvement and spending growth for 13 conditions.

Our granular look at each condition provides some lessons for trying to understand factors that influence

welfare changes in the health sector. First, we find a lot of heterogeneity in spending growth trends,

causes of spending growth, and the amount of quality improvements across the 13 conditions. This

speaks to the importance of having a scalable framework that can be applied consistently across con-

ditions. Overall, we find quality improvements for 12 of the 13 conditions and for many conditions the

quality improvements are large in magnitude. This suggests that price indexes which do not account for

quality improvements may overstate price growth.

Overall, the results raise important questions about how health care markets implicitly value quality

improvements, amid numerous market distortions. Similar to other sectors of the economy, we provide

evidence that innovation has led to sizeable quality gains. However, in contrast to other sectors of

the economy, we find diffusion of higher quality new innovations where the costs appear to exceed the

benefit from a consumer’s perspective.

In the long run, we argue that the patents for these innovations will expire, likely leading to lower costs,

consumer health improving, and higher consumer welfare. On the other hand, as Keynes famously said:

“In the long run we are all dead.”
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Online Appendix OA.A Robustness Checks Referenced in

the Main Text

Table OA1. Aggregate Results - Price indexes

(1) (2) (3) (4) (5) (6) (7)

∆ Avg QALYs
2018 - 2007

MktScan
Lifetime Costs

($1,000s)

Price
Index
$0

VSLY

Price
Index
$100k
VSLY

∆ Consumer
Welfare

$100k VSLY
($1,000s)

Price
Index
$500k
VSLY

∆ Total
Welfare

$100k VSLY
($1,000s)

2007 0.000 23,812 1.000 1.000 0 1.000 0
2008 -0.002 23,214 0.975 0.984 0 1.019 -1
2009 -0.009 24,196 1.016 1.052 -1 1.196 -1
2010 -0.005 25,176 1.057 1.077 -2 1.155 -0
2011 0.012 26,257 1.103 1.053 -1 0.853 1
2012 0.021 27,540 1.157 1.068 -2 0.716 2
2013 0.028 31,100 1.306 1.188 -5 0.715 3
2014 0.038 34,049 1.430 1.271 -6 0.637 4
2015 0.044 36,962 1.552 1.367 -9 0.628 4
2016 0.052 39,924 1.677 1.457 -11 0.577 5
2017 0.057 42,287 1.776 1.537 -13 0.580 6
2018 0.067 41,599 1.747 1.467 -11 0.347 7

Notes: This table presents changes in QALYs, costs, quality-adjusted price indexes, and consumer welfare aggregated

across all conditions. This table is similar to Table 2 except it presents results for all conditions, rather than hepatitis C.

See Table 2 for more details.

Table OA2. Price Indexes and Changes in Welfare for Each Condition Multiplying QALYs by
Two

(1) (2) (3) (4) (5) (6) (7)

∆ Avg QALYs
2018 - 2007

MktScan
Lifetime Costs

in 2007
($1,000s)

Price
Index
$0

VSLY

Price
Index
$100k
VSLY

∆ Consumer
Welfare

$100k VSLY
($1,000s)

Price
Index
$500k
VSLY

∆ Total
Welfare

$100k VSLY
($1,000s)

Asthma 0.005 16 1.014 0.987 0 0.877 0
Atrial Fibrillation 0.886 14 3.854 -2.313 48 -26.982 89
Colon Cancer -0.080 338 0.607 0.630 125 0.725 -8
Cystic Fibrosis 0.464 622 4.232 4.157 -1,963 3.858 46
HIV 0.335 312 1.505 1.398 -124 0.969 33
Hepatitis C 5.675 41 1.204 -12.697 559 -68.300 568
Hypertension 0.077 9 0.684 -0.224 10 -3.859 8
Lung Cancer 1.240 267 2.151 1.687 -184 -0.169 124
Multiple Sclerosis 0.839 476 2.998 2.822 -867 2.117 84
Osteoporosis 0.066 7 1.690 0.712 2 -3.199 7
Rheumatoid Arthritis 0.448 154 2.174 1.884 -136 0.723 45
Schizophrenia 0.226 38 0.823 0.222 29 -2.184 23
Venous Thromboembolism 0.205 6 1.308 -1.939 19 -14.928 20

Notes: This table presents changes in QALYs, costs, quality-adjusted price indexes, and consumer and total welfare,
constructed using the CEAR, MarketScan, and SSR Health datasets. This table is similar to Table 4 except it multiplies
QALYs by two. See Table 4 for more details.
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Table OA3. Price Indexes and Changes in Welfare for Each Condition Multiplying QALYs by
One-Half

(1) (2) (3) (4) (5) (6) (7)

∆ Avg QALYs
2018 - 2007

MktScan
Lifetime Costs

in 2007
($1,000s)

Price
Index
$0

VSLY

Price
Index
$100k
VSLY

∆ Consumer
Welfare

$100k VSLY
($1,000s)

Price
Index
$500k
VSLY

∆ Total
Welfare

$100k VSLY
($1,000s)

Asthma 0.001 16 1.014 1.008 0 0.980 0
Atrial Fibrillation 0.222 14 3.854 2.313 -19 -3.855 22
Colon Cancer -0.020 338 0.607 0.613 131 0.636 -2
Cystic Fibrosis 0.116 622 4.232 4.213 -1,998 4.138 12
HIV 0.084 312 1.505 1.478 -149 1.371 8
Hepatitis C 1.419 41 1.204 -2.271 134 -16.172 142
Hypertension 0.019 9 0.684 0.457 5 -0.452 2
Lung Cancer 0.310 267 2.151 2.035 -277 1.571 31
Multiple Sclerosis 0.210 476 2.998 2.954 -929 2.778 21
Osteoporosis 0.017 7 1.690 1.445 -3 0.467 2
Rheumatoid Arthritis 0.112 154 2.174 2.102 -170 1.811 11
Schizophrenia 0.057 38 0.823 0.673 12 0.071 6
Venous Thromboembolism 0.051 6 1.308 0.496 3 -2.751 5

Notes: This table presents changes in QALYs, costs, quality-adjusted price indexes, and consumer and total welfare,
constructed using the CEAR, MarketScan, and SSR Health datasets. This table is similar to Table 4 except it multiplies
QALYs by one-half. See Table 4 for more details.

Adding weight to high quality studies, reducing weight to industry affiliated studies:

The CEAR data has a 1-7 measure of study quality, as judged by their readers, where the quality measure

depends on whether methods and results were communicated clearly, assumptions were reasonable, and

whether sensitivity and subgroup analyses were included. In addition, the CEAR contains a variable

that indicates if authors have academic or industry affiliations, and whether the study was sponsored by

industry. In Table OA4, we set the weight of each study to its quality score. A study rated as a “7”

is weighted seven times as much as study rated as a “1.” We also add two points for studies with an

author with an academic affiliation and subtract two points if the study had an author with industry

affiliation or was sponsored by industry. Results are very similar to the equal weighting results, and are

not sensitive to changes in the weighting scheme we use or varying which variables we include.
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Table OA4. Price Indexes and Changes in Welfare for Each Condition Increasing Weighting
for High Quality Studies

(1) (2) (3) (4) (5) (6) (7)

∆ Avg QALYs
2018 - 2007

MktScan
Lifetime Costs

in 2007
($1,000s)

Price
Index
$0

VSLY

Price
Index
$100k
VSLY

∆ Consumer
Welfare

$100k VSLY
($1,000s)

Price
Index
$500k
VSLY

∆ Total
Welfare

$100k VSLY
($1,000s)

Asthma 0.002 16 1.014 1.000 0 0.940 0
Atrial Fibrillation 0.470 14 3.854 0.583 6 -12.502 47
Colon Cancer -0.037 338 0.607 0.618 129 0.661 -4
Cystic Fibrosis 0.233 622 4.232 4.194 -1,986 4.045 23
HIV 0.173 312 1.505 1.450 -141 1.228 17
Hepatitis C 2.819 41 1.204 -5.700 274 -33.319 282
Hypertension 0.039 9 0.684 0.230 7 -1.590 4
Lung Cancer 0.586 267 2.151 1.932 -249 1.055 59
Multiple Sclerosis 0.406 476 2.998 2.913 -910 2.572 41
Osteoporosis 0.036 7 1.690 1.164 -1 -0.938 4
Rheumatoid Arthritis 0.189 154 2.174 2.052 -162 1.562 19
Schizophrenia 0.120 38 0.823 0.505 19 -0.767 12
Venous Thromboembolism 0.107 6 1.308 -0.393 9 -7.196 11

Notes: This table presents changes in QALYs, costs, quality-adjusted price indexes, and consumer and total welfare,

constructed using the CEAR, MarketScan, and SSR Health datasets. This table is similar to Table 4 except it weights by

study quality. See Table 4 for more details.

Table OA5. Counterfactual: Removing All New Drugs - Assuming That Marginal Costs are
20% of Negotiated Prices

(1) (2) (3) (4) (5) (6)

Baseline
Cost

Growth
2018 - 2007

($1,000s)

Cost
Growth
due to

Innovation
($1,000s)

Share of
Cost

Growth
due to

Innovation

∆ Consumer
Welfare
due to

Innovation
$100k VSLY

($1,000s)

∆ Producer
Surplus
due to

Innovation
($1,000s)

∆ Total
Welfare
due to

Innovation
$100k VSLY

($1,000s)

Asthma 0 0 0.292 0 0 0
Atrial Fibrillation 41 8 0.196 67 6 74
Colon Cancer -133 6 -0.048 -5 5 0
Cystic Fibrosis 2,009 560 0.279 -541 448 -93
HIV 158 80 0.505 -73 64 -9
Hepatitis C 8 8 1.000 276 7 282
Hypertension -3 0 0.000 0 0 0
Lung Cancer 308 278 0.904 -216 222 6
Multiple Sclerosis 950 192 0.202 -174 154 -21
Osteoporosis 5 2 0.505 0 2 2
Rheumatoid Arthritis 181 10 0.057 -4 8 5
Schizophrenia -7 3 -0.415 1 2 3
Venous Thromboembolism 2 2 1.049 5 2 6

Aggregate 18 4 0.229 1 3 4

Notes: This table is similar to Table 6 except we assume marginal costs are 20% of the prices we observe. See Table 6 for
more details.

OA - 3



Table OA6. Counterfactual: Price Indexes and Changes in Welfare for Each Condition Between
2007 and 2018, but Simulating Prices After Drugs Go Off Patent

(1) (2) (3) (4) (5) (6) (7)

∆ Avg QALYs
2018 - 2007

MktScan
Lifetime Costs

in 2007
($1,000s)

Price
Index
$0

VSLY

Price
Index
$100k
VSLY

∆ Consumer
Welfare

$100k VSLY
($1,000s)

Price
Index
$500k
VSLY

∆ Total
Welfare

$100k VSLY
($1,000s)

Asthma 0.002 16 1.001 0.987 0 0.932 0
Atrial Fibrillation 0.443 14 3.363 0.279 10 -12.055 44
Colon Cancer -0.040 338 0.581 0.593 138 0.640 -4
Cystic Fibrosis 0.232 622 2.001 1.964 -599 1.815 23
HIV 0.167 312 0.425 0.371 196 0.157 17
Hepatitis C 2.838 41 0.257 -6.693 314 -34.495 284
Hypertension 0.039 9 0.677 0.223 7 -1.595 4
Lung Cancer 0.620 267 0.952 0.720 75 -0.208 62
Multiple Sclerosis 0.419 476 1.013 0.925 36 0.572 42
Osteoporosis 0.033 7 0.699 0.210 5 -1.745 3
Rheumatoid Arthritis 0.224 154 0.901 0.755 38 0.175 22
Schizophrenia 0.113 38 0.764 0.463 20 -0.739 11
Venous Thromboembolism 0.102 6 0.978 -0.646 10 -7.140 10

Notes: This table presents changes in QALYs, costs, quality-adjusted price indexes, and consumer and total welfare,

constructed using the CEAR, MarketScan, and SSR Health datasets. The results are similar to Table 4, except in 2018

we assume that prices declined by 85% for on-patent drugs. This is meant to simulate a “long-run” outcome where these

drugs have lost patent protection. Note that we allow non-drug costs to change between 2007 and 2018, so conditions like

atrial fibrillation, which have increases in non-drug spending, still see unadjusted prices rising.

Alternative QALY regression estimates — We also estimate QALYs making different assumptions re-

garding how the QALY regression (Equation 4) is estimated. Table OA7 shows results for price indexes

assuming $100,000 VSLY. Column 1 is the baseline result from Table 4. Column 2 does not normalize for

heterogeneity in study assumptions, see Appendix Section OA.B.4 for more details of how we normalize

for different assumptions that studies make. Column 3 makes the same heterogeneity adjustments as

column 1, but does so on the QALYs in the raw data, before running the regression in Equation 4,

rather than adjusting the study fixed effects.

In our main specification, we drop studies which say they are a “placebo,” “no treatment,” “usual care,”

“standard of care,” and “status quo.” We do this because it is often unclear what these treatments are,

and we worry that these categories will add a lot of noise or biases.48 However, dropping these categories

drops some studies. In our main regression there were 1,088 comparisons. Adding back placebo, no

treatment, standard of care, usual care, and status quo increases that number to 1,463. Columns 4 and

5 present results with these comparisons added back in. Column 6 estimates the QALY regressions in

levels.

48For example, there are cases where placebo makes little sense, like rheumatoid arthritis DMARDs compared against a
placebo. Likewise, the standard of care can change. Some studies list what the standard of care is (and we classify those
treatments), but we can see the standard of care differs across studies.
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Table OA7. $100,000 VSLY Price Index Results With Different CEAR Regression Specifications

(1) (2) (3) (4) (5) (6)

Baseline
Result

Don’t
Normalize

Heterogeneity

Normalize
Heterogeneity

First
Add No

Treatment

Add
Standard
of Care

Estimate
Regression

in Levels
Asthma 1.001 0.977 1.013 0.997 0.997 1.013
Atrial Fibrillation 0.771 1.228 0.345 0.682 0.598 0.787
Colon Cancer 0.619 0.638 0.618 0.624 0.625 0.601
Cystic Fibrosis 4.194 4.210 4.211 4.193 4.193 4.201
HIV 1.452 1.477 1.472 1.386 1.384 1.457
Hepatitis C -5.746 -2.467 -3.041 -5.756 -5.801 -4.465
Hypertension 0.230 0.289 0.328 0.179 0.183 0.163
Lung Cancer 1.919 1.096 1.718 1.917 1.911 1.997
Multiple Sclerosis 2.910 2.914 2.913 2.854 2.847 2.934
Osteoporosis 1.201 1.306 1.237 1.293 1.292 1.359
Rheumatoid Arthritis 2.029 2.001 1.197 2.018 2.016 2.059
Schizophrenia 0.522 0.607 0.804 0.508 0.498 0.802
Venous Thromboembolism -0.316 -0.008 0.275 -0.282 -0.327 0.543

Notes: This table presents estimated quality-adjusted price indexes assuming a $100,000 VSLY using different specifications

in our regressions. Column 1 is the baseline result from Table 4. Column 2 does not normalize study heterogeneity. Column

3 normalizes study heterogeneity on the raw QALYs, rather than the study fixed effects. Columns 4 and 5 add additional

studies which are less specific about the treatments in the regressions. Column 6 estimates the regressions in levels rather

than logs.

Overall, results are qualitatively similar, though there are some differences in magnitudes across these

results. Except for asthma and one specification for atrial fibrillation, consumer welfare is consistently

falling or rising (the index is above or below 1) for each specification.

Online Appendix OA.B Data and Methods Appendix

OA.B.1 Cleaning and Classifying the CEAR data

We chose the 13 conditions which were associated with the most studies in the CEAR and seemed

appropriate for our analysis. To determine if a comparison is related to that condition, we search the

disease variable (this variable has names like “hepatitis C” or “rheumatoid arthritis”), the ICD-10 code

and chapter descriptors, and the study title for strings that match our condition names.

The key variable in our data is the treatment variable. These are typically a sentence or two long. We

tasked multiple research assistants to classify each treatment in the CEAR data to a specific molecule.

Each treatment was classified by two research assistants to ensure accuracy.49 We ignore variations

within a molecule like dose (5 mg vs. 10 mg), form (injectable vs. oral), frequency of treatment and

treatment length as these are not straightforward to map into claims data and are not consistently

reported in the CEAR data. Often pharmaceutical treatments are vague, only listing a drug class (such

as DMARDs for rheumatoid arthritis). We drop these observations because they are not specific enough

to credibly map to the MarketScan data. Brand names are mapped back to molecule names (such as

brand name “Sovaldi” mapped back to molecule “sofosbuvir”).

49We also spent some time classifying procedures. However, procedure names in the CEAR are not standardized and often
hard to consistently and accurately match to Current Procedural Terminology (CPT) codes in claims data.
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We then merged the CEAR data with the MarketScan data by condition and molecule. To merge

by condition we used the Clinical Classification System (CCS) categories provided by the Agency for

Healthcare and Research Quality for the MarketScan data and matched the CCS condition names to

those in the CEAR. The only exceptions to using CCS categories were for hepatitis C and atrial fibrillation

because the CCS categories for these conditions were too broad. Therefore, instead of using the broad

CCS category for “hepatitis,” we selected ICD-9 and ICD-10 codes specific to hepatitis C.50

To match by molecule we used the treatment names in the CEAR and searched the 2008, 2010, and

2012-18 Red Book for all National Drug Codes (NDCs) associated with these names. Searching across

multiple Red Book ensures that we capture NDCs that enter and exit over time. Likewise, we search

the Healthcare Common Procedure Coding System (HCPCS)-NDC crosswalk for all the HCPCS codes

associated with a treatment name.

The CEAR data often compares combinations of molecules with other combinations of molecules. In

these cases, we view the CEAR quality estimates as being valid for the combinations, so we use the

same combinations in the MarketScan data. We used the CEAR data to identify molecules which

patients might take in combination. Once the sample of molecules and combinations of molecules is

classified in the CEAR, we search for each patient’s condition-specific combinations in the MarketScan

data. We look at all drugs that patient took in a given year and create combinations based on what

they are observed to take. For example, if a patient diagnosed with hepatitis C is observed to have

taken Ribavirin, Simeprevir, and Sofosbuvir in 2018, then we identify the following seven treatment

possibilities: Ribavirin, Simeprevir, Sofosbuvir, Ribavirin/Simeprevir, Ribavirin/Sofosbuvir, Simepre-

vir/Sofosbuvir, and Ribavirin/Simeprevir/Sofosbuvir. Among the possibilities, we assign this patient

to the combination with the most drugs that is also in the CEAR data, which in this example would be

Ribavirin/Simeprevir/Sofosbuvir.

OA.B.2 CEAR Coverage of Spending

To check how well the CEAR data covers the most important treatments, we examine the share of

spending we observe in various datasets. For colon cancer and lung cancer most treatments are physician

administered, so the treatments are in medical claims with diagnosis codes. For other conditions, most

treatments are in pharmacy claims which do not include diagnosis codes in the MarketScan data. For

those conditions, we use the MEPS data.

For colon cancer and lung cancer, we calculate the share of chemotherapy drugs we classify in the Tufts.

To do this, we sum all expenditures on any chemotherapy drugs taken by individuals in our colon and

lung cancer samples (where chemotherapy drugs are defined by the BETOS category). We also sum

up the expenditures on chemotherapy drugs we classify in Tufts for these conditions. We use the years

50The exact mapping is as follows: Asthma is CCS code 128. Atrial Fibrillation related ICDs are 4270, 42731, 42732,
42761, 42781, I480, I481, I482, I483, I484, I4891, I4892, I491. Colon Cancer is CCS code 14. Cystic Fibrosis is CCS code
56. Hepatitis C ICDs 07041, 07044, 07051, 07054, 07070, 07071, B1710, B1711, B1920, B1921, B182. HIV is CCS code
5. Hypertension is CCS codes 98 and 99. Lung Cancer is CCS code 19. Multiple Sclerosis is CCS code 80. Osteoporosis
is CCS code 206. Rheumatoid Arthritis is CCS code 202. Schizophrenia is CCS code 659. Venous Thromboembolism is
CCS code 118.
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2007, 2012, and 2017 to capture the coverage across the entire sample period. For lung cancer, at least

92% of all spending on chemotherapy drugs are in the CEAR data. For colon cancer, that number is at

least 85%. In both cases, a majority of the missing spending is for drugs which reduce nausea and other

chemotherapy side effects. This analysis suggests we are capturing most of the important chemotherapy

drugs for these conditions.

For other conditions, we use the 2007-2017 MEPS data to explore CEAR coverage. The MEPS data

are useful for this exercise because there are diagnosis codes on pharmaceutical claims, allowing us to

determine the share of MEPS spending we observe in the CEAR. However, the MEPS data do not

include five-digit CPT codes, which limits our ability to measure physician administered drugs. The

MEPS also masks some NDCs for expensive drugs for confidentiality reasons, so high-cost drugs like

Sovaldi are not in the MEPS data. This will bias our results towards zero. We also do not include cystic

fibrosis in this analysis, as MEPS masks cystic fibrosis in the data after 2009, again due to confidentiality

reasons.

Table OA8 provides evidence of how much spending we can classify. The first column shows the per-

centage of total spending, in the MEPS, that is pharmaceutical spending for a condition (unconditional

on whether it is in the Tufts data). For example, 70% of hepatitis C spending is associated with phar-

maceuticals (and in the drug files), though this misses some high-cost hepatitis C drugs like Sovaldi.

Non-pharmaceutical spending includes hospital stays, physician visits, screenings, diagnostic imaging,

and other non-pharmaceutical spending. Another example is hypertension, which is mostly treated with

pharmaceuticals, but we are picking up doctor’s visits where hypertension is the first listed diagnosis. For

atrial fibrillation there is considerable spending on ablation procedures. For venous thromboembolism

inferior vena cava filters and thrombectomy/embolectomy are important treatments for some patients.

For the remainder of conditions we consider, at least 60% of costs are pharmaceuticals.
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Table OA8. Share of MEPS Spending we Classify

(1) (2) (3)

% of All Spending

On RX
for Condition

% of RX Spending

We Categorize

in Tufts

% of RX Spending in

Tufts on 5% Market
Share Drugs

Asthma 65 69 80

Atrial Fibrillation 8 47 60

HIV 71 90 100

Hepatitis C 70 91 100

Hypertension 43 42 79

Multiple Sclerosis 68 92 100

Osteoporosis 70 89 93

Rheumatoid Arthritis 65 85 100

Schizophrenia 52 89 100

Venous Thromboembolism 15 81 85

Notes: This table presents results for how much drug spending in the 2007-2017 MEPS we classify in the CEAR. Column

1 presents the share of all spending in the MEPS is pharmaceutical spending, regardless of whether it is in the CEAR data.

Column 2 is the amount of all pharmaceutical spending we classify in the CEAR. Column 3 is the same as column 2, but

only keeps drugs that have 5% market share over the sample period. Rare/expensive drugs have masked NDC codes and

drugs administered by physicians are not included which will bias our results towards zero. Cystic fibrosis is not included

because MEPS masks that condition to protect anonymity. Lung cancer and colon cancer are not included because their

treatments are mostly physician administered and the MEPS data do not contain information about these treatments.

The second column shows the share of total drug spending in the MEPS data that is captured by the

CEAR data. The MEPS data often contain more classes of drugs that treat a condition, for example

painkillers or anti-nausea medication, which are symptom aids that treat many conditions. In addition,

comorbidities can inflate spending. For example, if a patient has high cholesterol and hepatitis C, we

may see statins in their hepatitis C claims. To better understand how much coverage we have for each

condition, column 3 is limited to just drugs that have at least 5% market share over the sample period,

which drops many of these other drugs. In column 3, we see that we capture at least 79% of spending

on drugs that have at least 5% market share for all conditions except atrial fibrillation (60%).

OA.B.3 Rebate Adjustment

To account for manufacturer rebates, we supplement the MarketScan data with data from SSR Health

data. SSR Health, LLC collects data from drug manufacturer SEC filings on revenue net of rebates.

They combine the revenue measure with units sold collected by Symphony Health. They then divide

net revenues by units sold to estimate a price net of rebates. We aggregate the SSR Health data to the

brand-year level. Our SSR Health data includes 1,057 different drugs. To apply this in the MarketScan

data, we compute one minus the ratio of net prices to list prices (NET/WAC) which we interpret as the

share of revenue which is paid in rebates. Then, at the molecule level, we adjust the level of spending in

the MarketScan data by multiplying the payment amounts in the MarketScan data by the NET/WAC

ratio for each drug we observe in the SSR Health data. If a molecule is missing in the SSR Health data,

which is common (e.g., for most generics), we assume there is no rebate.
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OA.B.4 Accounting for Heterogeneity in Cost and Quality

Studies in the CEAR data often make various assumptions in calculating their costs and QALYs. For

example, a study may vary in the discount rate used, the time horizon considered, or country of interest.

In our analysis we include comparison fixed effects which difference out these factors (Equation 4).

However, because our results are retransformed including the common effect of a comparison, γu,d,

we standardize the study common effect based on the characteristics of each study. To do this, we

regress our estimate of each comparison’s γu,d on the characteristics of the study and predict what the

study common effect would have been under consistent assumptions. For this regression, the unit of

observation is a comparison. Our regression equation is:

ˆγu,d = β0 + β11(Study uses lifetime time horizoni) + β2time horizoni + β3time horizon2
i

+ β4time horizon3
i + β51(Study discounts the futurei) + β6Discount ratei (A1)

+ γg + γa + γr + γc × 1(Treatment is placeboi) + εi

where ˆγu,d is the estimate of the comparison fixed effect from Equation 4. γg, γr, γc are gender, country,

and condition fixed effects, respectively. Studies also include indicators for the age groups included (i.e.

0-18, 19-40, etc.). If the study includes multiple age groups we divide this indicator by the number of

age groups included to get a share of the age groups.51

Results for these regressions are available on request. Coefficient estimates are of the expected sign,

statistically significant, and robust to inclusion of various additional fixed effects and controls includ-

ing discount rate variables, indicators for whether there is time discounting, country fixed effects and

condition fixed effects.

Using these results, we predict a common effect for all studies using standardized assumptions across

studies. For the country-specific dummy, we standardize values to the United States. We also specify

that the time horizon is a “lifetime” and set the discount rate to be 3%. As the demographics change

across conditions, we set the demographic variables (age group share and gender indicators) to the mean

for that condition in the CEAR data.52 Table OA7 presents quality-adjusted price indexes which check

robustness to other assumptions. In particular, we do not adjust for heterogeneity, we adjust the raw

QALY (rather than the study fixed effects) for heterogeneity, we add in some additional studies with less

precise treatment names, and run the regression in levels. Results are qualitatively similar regardless of

specification.

51For example, if a study has the indicators for 0-18 and 19-40, then we assign 0.5 for each of those variables, rather than
1 for each indicator. Results do not change much if we use indicators rather than shares.

52The one exception is that we set the share over 65 to be equal to zero to be consistent with the MarketScan data. Results
do not change much when we leave the share over 65 as its average value in the CEAR data.
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OA.B.5 Lifetime Costs and Annual Scaling Factor

To calculate lifetime costs we re-scale annual estimates using a scaling factor. In this section we

describe how the scaling factor is determined and how it relates to lifetime costs. We take into account

four factors when calculating the scaling factor: time discounting, the probability of dying, the age

distribution for condition d, and how costs progress for an individual. Consider a person at age a. Each

year s into the future they have the probability of dying la,s, and if they are alive they have expected

costs ˆCps,d. Formally, we calculate the estimated lifetime cost for this individual as:

LCpa,d =
100∑
s=0

(1− ρ)s · la,s · ˆCps,d (A2)

where ρ is the interest rate. To be consistent with our standardized QALY estimates, we assume ρ is

0.03. la,s is the probability of someone age a dying in s periods into the future, which is calculated using

the life tables. We then weight across individuals with treatments using the disease-specific distribution

of ages in the MarketScan data, pa,d.

LCpd =

100∑
a=0

pa,d

100∑
s=0

(1− ρ)s · la,s · ˆCps,d (A3)

ˆCps,d measures how costs change after an individual with disease d receives treatment. As our goal is to

measure lifetime costs, we want to understand how persistent costs are. For example, some conditions

might have costs concentrated in one year (e.g., surgery and chemotherapy for cancer typically occurs

in one year) while other conditions may have costs that persist indefinitely. To measure this cost

progression, we construct a sample of individuals who are enrolled for four consecutive years after their

first treatment and one year prior to treatment (to ensure this is a patient’s first treatment). We added

the superscript p to ˆCps,d to indicate this is for our panel of individuals.

Figure OA1 shows how costs evolve for hepatitis C, hypertension, and rheumatoid arthritis. For hepatitis

C, in the first year of treatment (year 0), the average cost is $35,000 while in year 3 the average cost

is closer to $5,000. The steep decline in costs after one year of treatment is because the treatments for

hepatitis C are typically taken in one course, rather than indefinitely. One can see this in the median

and 75th percentile of costs, which go to zero, as we include individuals enrolled but not treated in our

panel.53

Hypertension has costs which decline from $600 in year 1 to $225 in year 3 and 4. In the first year of

treatment people may be receiving some additional doctors or diagnostic visits that are not present in

years 3 and 4 once their treatment stabilizes. Therefore, the cost progression captures one expensive year

53While our annual cost of treatment measure, used in the rest of the paper focuses on individuals with treatment (so we
drop those with no treatment in a given year), our panel measure picks up individuals who are enrolled (which is the
condition for inclusion in the panel), but may not receive any treatment.
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and additional moderately expensive years. For rheumatoid arthritis, treatments are taken indefinitely,

so costs do not necessarily decline over time. The increasing slope for these conditions includes the fact

that treatments are getting more expensive over time, which is handled by including year fixed effects

in our regressions described below.

To approximate this cost progression and extrapolate out over 100 years, we regress costs on years since

first diagnosis with fixed effects, up to four years, and calendar-year fixed effects using GLM with a

log link.54 We include calendar-year fixed effects because services are getting more expensive over time

which inflates the slopes in Figure OA1. After fitting this regression, we predict costs for each year

of having the condition using 2007 as the base year.55 We then plug these estimates into Equations

A2 and A3, to get the lifetime cost estimates for our panel of individuals using 2007 as the base, LCpd,2007.

54We use Generalized Linear Model (GLM) as it has a better fit than log Ordinary Least Squares (OLS) and then applying
a retransformation using the smearing estimator in Duan (1983).

55In our preferred specification with years since first diagnosis fixed effects, we assume that the year 4 costs remain constant
for 96 more years, reflecting a stabilizing in costs. However, we also estimate regressions using a linear trend in years
since first treatment. However, this linear trend often goes to zero, which we think understates the persistence of costs.
We have also tried higher order polynomials in these regressions, but these results do not seem credible given how far out
of sample we are predicting.
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Figure OA1. Cost Progression for Selected Conditions

Hepatitis C Hypertension

Rheumatoid Arthritis

Notes: This figure presents the cost progression for an individual with a treatment for the noted disease. Each year is just

the sample mean (or sample percentile) of spending for someone X years from their first treatment year. Everyone gets

the treatment in year 0. We follow patients for four additional years and take the average of their spending in each year,

including patients with no spending.

There are two reasons why this lifetime cost estimate differs from the estimates we need. First, costs

for individual treatments change over time, whereas this lifetime cost estimate fixes costs in 2007.

Second, we need to observe people for a few years to understand how costs evolve, but people who are

continuously enrolled for six years or had a year without treatment may have different costs than the

average treated person with condition d.

To address the first concern, we multiply LCpd,2007 by
C̄d,t

C̄d,2007
, where C̄d,t is just the average spending on

disease d in year t. This captures how annual spending evolves over time for the average treated person.

For the second issue, we multiply by
C̄d,2007

Ĉp1,d,2007
, where Ĉp1,d,2007 is the predicted average cost, conditional

on treatment, for someone in 2007 who fits our six years of continuous enrollment criteria. This adjusts
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for the sample selection in using people enrolled for multiple years. That is, our cost estimates are:

LifetimeCostd,t = LCpd,2007

C̄d,t
C̄d,2007

C̄d,2007

Ĉp1,d,2007

= LCpd,2007

C̄d,t

Ĉp1,d,2007

(A4)

This leads to an intuitive cost multiplier
LCpd,2007

Ĉp1,d,2007
, which is the lifetime cost of the select sample of

people enrolled multiple years, divided by the average annual cost of that select sample. Therefore,

throughout the paper we compute C̄d,t and multiply it by our cost multiplier:

αd =
LCpd,2007

Ĉp1,d,2007

(A5)

this ratio has an intuitive form, as well, which helps clarify the main assumption we are making. αd tells

us the ratio of lifetime costs to average treatment costs in one year (with treatment) for our continuously

enrolled sample. We then assume that this ratio of lifetime costs to one-year costs holds for the main

sample.

Table OA9 presents the lifetime cost multiplier we estimate for each condition. Column 4 is the ver-

sion which assumes costs are constant and the life tables and time discounting suggest a lifetime cost

multiplier of 23-27. The first column is our preferred specification, which assumes that 4th year costs

continue indefinitely. For a condition like hepatitis C, our preferred cost multiplier is 3.7. This cost mul-

tiplier is much smaller because people mostly have only one expensive year of treatment (i.e. you take

one course of Sovaldi). For conditions like rheumatoid arthritis and multiple sclerosis where people con-

tinue taking treatments indefinitely, costs are similar to the version without accounting for the cost slope.

Table OA9. Lifetime estimate cost multipliers for each condition

(1) (2) (3) (4)

Preferred
Specification

Uses Years
Since

Trend Line

No Untreated
Prior Year

Needed
Constant Costs

No Slope
Asthma 12.571 3.733 15.931 27.859
Atrial Fibrillation 8.103 3.064 8.774 24.016
Colon Cancer 7.885 2.241 7.834 23.735
Cystic Fibrosis 23.167 10.109 25.525 28.913
HIV 23.300 14.772 23.965 25.905
Hepatitis C 3.683 1.507 3.659 24.318
Hypertension 12.491 4.561 15.226 24.296
Lung Cancer 7.468 3.128 8.442 23.324
Multiple Sclerosis 22.658 13.653 21.688 25.422
Osteoporosis 7.167 2.845 7.276 23.249
Rheumatoid Arthritis 23.415 16.870 28.219 24.872
Schizophrenia 9.096 2.636 14.704 26.703
Venous Thromboembolism 3.827 1.483 4.435 24.823

Notes: This table presents lifetime estimate cost multipliers for each condition. All columns account for the age distribution

of a condition, life expectancy, and the discount rate when calculating lifetime costs. Columns 1-3 account for the idea

that when someone has treatment in one year that their future costs may not remain constant. Column 1 keeps costs

constant at their year four level. Column 2 uses a log-linear trend to predict costs. Column 3 does not condition on having

a year without spending prior to the first year of treatment. Column 4 holds treatment costs constant.
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Estimated lifetime costs for asthma and hypertension are about half of what they are in the last column,

which just takes into account life expectancy. For these conditions, we see some lumpy costs, like

doctor’s visits and diagnostic tests, which are not paid every year. Likewise, we see that some people

stop taking their medications. The annual costs we compute C̄d,t are conditional on having a doctor’s

visit with an associated diagnosis code and having a treatment, so it likely captures years that are

more expensive than the average year. Our lifetime cost estimates, with the panel, accounts for this

lumpiness. For these two conditions these cost estimates are telling us an average year is about half as

expensive as a year where we observe doctor’s visits.

The other columns test the robustness of the assumptions we make. Column 2 uses a linear trend for

years since treatment rather than assuming the 4th year remains constant. This predicts costs trend to

zero for most conditions, which we think understates the persistence of costs and is why the results in

Column 2 are much lower than Column 1.

Table OA10. Price Indexes for Each Condition Using Different Lifetime Cost Assumptions -
$100,000 VSLY

(1) (2) (3) (4) (5)

Preferred
Specification

Uses Years
Since

Trend Line

No Untreated
Prior Year

Needed
Constant Costs

No Slope
Annual
Costs

Asthma 1.001 0.968 1.004 1.008 0.841
Atrial Fibrillation 0.771 -4.300 1.007 2.814 -21.133
Colon Cancer 0.619 0.648 0.619 0.611 0.700
Cystic Fibrosis 4.194 4.146 4.198 4.202 3.367
HIV 1.452 1.421 1.453 1.457 0.257
Hepatitis C -5.746 -15.786 -5.793 0.151 -24.396
Hypertension 0.230 -0.560 0.312 0.451 -4.991
Lung Cancer 1.919 1.597 1.946 2.077 0.419
Multiple Sclerosis 2.910 2.852 2.906 2.920 1.001
Osteoporosis 1.201 0.458 1.208 1.539 -1.814
Rheumatoid Arthritis 2.029 1.973 2.054 2.038 -1.223
Schizophrenia 0.522 -0.214 0.637 0.721 -1.912
Venous Thromboembolism -0.316 -2.881 -0.093 1.058 -4.906

Notes: This table presents our quality-adjusted price indexes, constructed using the CEAR, MarketScan, and SSR Health

datasets. Each column assumes that the VSLY is $100,000. All columns (except the last) account for the age distribution

of a condition, life expectancy, and the discount when calculating lifetime costs. The first three columns account for the

idea that when someone has treatment in one year that their future costs may not remain constant. The first column keeps

costs constant at their year four level. The second column uses a log-linear trend to predict costs. The third column does

not condition on having a year without spending prior to the first year of treatment. The fourth column holds treatment

costs constant. Column 5 assumes all costs are in one year, which is clearly unrealistic, but is a clear lower bound.

Column 3 drops the requirement that we observe one year without diagnosis prior to the first year. This

increases the multiplier estimates because we have more people who are in the constant cost stage of

their treatment, reducing the steepness of the slopes in Figure OA1. Results are fairly similar, suggesting

that conditioning on having no spending in the prior year does not impact results much.

Table OA10 shows price index estimates using all of these specifications and annual costs (assuming the
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multiplier is 1). With annual costs prices are falling much more quickly than with constant costs. This

is a very wide range of assumed values, results are different and should be viewed as very wide bounds

on our central estimates.

Online Appendix OA.C Additional Analyses

OA.C.1 Comparing Aggregate Welfare with R&D Costs

In this section, we do a back-of-the-envelope calculation to estimate the aggregate (rather than per-

patient) total welfare gains per drug approval. Other studies, such as DiMasi et al. (2003, 2016) have

estimated the cost of R&D per drug approval, the latest paper finding costs on the order of $1.4-$2.6

billion per approved drug in 2013 or $1.5-$2.8 billion in 2018 dollars. Our goal in this section is to

provide some context for the value we are getting for that R&D expenditure.

We begin with the total welfare estimates from Table 6, which calculates total welfare gained per patient

taking new drugs in 2018, versus a 2007 benchmark.56 These estimates are already in “lifetime” units,

for example a change in mean QALYs of 1 means a patient taking an average drug in 2018 gets 1

more QALY than a patient in 2007 over their lifetime. For each condition, we take the per patient

estimates, then multiply the number of treated patients in MarketScan. We then scale number of

treated patients by the ratio of the number of under-65 privately insured individuals in the U.S. to the

number of MarketScan enrollees. To get the per-drug total welfare created by new drugs, we then divide

by the number of new drugs in our sample that have been approved between 2007 and 2018.

The first column of Table OA11 presents the results for just 2018. We drop asthma, colon cancer,

hypertension, and rheumatoid arthritis because they had few new entrants during our sample period.

We calculate that innovations in the treatment of hepatitis C added about $1.9 billion in total welfare

per new drug, just for individuals taking hepatitis C drugs in 2018. These estimates depend on the

relative health benefit of the innovations and the number of people taking the drugs. Atrial fibrillation

drugs have both large health benefits and a lot of people taking them, hence the $13 billion value.

Cystic fibrosis has a highly effective entrant, but because it is more rare, it creates only $375 million in

welfare in 2018.

To capture the full lifetime value, we need to account for patients that will start taking the drugs in

2019, 2020, etc. To do this, we calculate the share of individuals who take a treatment for the first

time in a given year, compared to those continuing treatment. Then we compute the net present value

of those additional patients, going out 20 years and assuming a discount rate of 0.97. We call this

estimate the lifetime value per drug.

56We focus on total welfare for two reasons. First, we think it is a policy-relevant benchmark, though one could argue
consumer surplus is just as important or more important. Because total welfare maps directly to health benefits, it is
still very much capturing an object of interest. Second, it reduces complications regarding the lifetime split of consumer
versus producer surplus which would add another element of uncertainty in this already rough calculation.
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Table OA11. Back-of-the-Envelope Aggregate Welfare Calculations

(1) (2)
2018 Value
Per Drug

(millions)

Lifetime Value
Per Drug

(millions)

Atrial Fibrillation 13,089 109,375
Cystic Fibrosis 375 2,197
HIV 191 1,173
Hepatitis C 1,921 22,898
Lung Cancer 389 4,393
Multiple Sclerosis 984 5,738
Osteoporosis 1,335 13,610
Schizophrenia 731 7,198
Venous Thromboembolism 870 8,793

Notes: This table presents results for our back-of-the-envelope aggregate total welfare calculations. The first column

shows total welfare due to innovation from Table 6 as described in the preceeding paragraph. Column 2 then takes the net

present value of column 1 over 20 years, where we account for the number of people getting treated for a given disease

each year. Asthma, colon cancer, hypertension, and rheumatoid arthritis are dropped because they do not have many new

entrants.

The second column of Table OA11 presents the lifetime value per drug. Values range from $1.17 billion

for HIV to $109 billion for atrial fibrillation. Except for cystic fibrosis and HIV, each condition has

lifetime values well above the upper range suggested by DiMasi et al. (2016). For cystic fibrosis this is

partially due to the fact that the new drugs are still diffusing, while HIV had its highest value innovations

before the sample period. We think this is a lower bound estimate. We are not accounting for market

expansion (see Appendix Section OA.C.3) and this calculation is based on the under-65 privately insured

population in the United States, so it ignores Medicare, Medicaid, and international markets.57 Still our

estimates suggest that the societal benefits of these new innovations are an order of magnitude larger

than the R&D costs of innovation.

OA.C.2 Incorporating Health Risk, Financial Risk, and Insurance

In this section, we begin by deriving our consumer welfare measure which follows Cutler et al. (1998)

closely, and is also used in cost-effectiveness studies. We then build on this measure by incorporating

the health risk, financial risk, and the value of health insurance, in the spirit of Lakdawalla et al. (2017).

Suppose an individual derives utility from their health and consumption, u(C,H). The standard ap-

proach to deriving consumer welfare gains from innovation is to determine how much a consumer would

have to pay to be indifferent between states of the world with and without the innovation, denoted 1

and 0, respectively. This value can be implicitly defined using the following expression:

u(Y − S1 − V,H1) = u(Y − S0, H0).

57According to a recent Global Use of Medicines report by IQVIA, North America accounts for only 8.5% of worldwide drug
purchases.
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where Y is income, S is the cost of medical care, and H is the health achieved in each state.58 V is

the implicit measure of the consumer welfare generated by the new technology, as it sets utility equal

across the two states.

Let uH and uC denote the derivatives of the utility function with respect to H and C, respectively.

Taking the full derivative, the value of the new innovation can be derived as:

V =
uH
uC

(H1 −H0)− (S1 − S0). (A6)

This is the standard formulation of value of innovation in both the cost-effectiveness literature and the

quality-adjusted price index literature. This also matches Equation 2, noting that uH
uC

is the value of

health converted into dollars, or the VSLY.

Lakdawalla et al. (2017) note that this “conventional” formulation is missing some important compo-

nents. First, it does not account for the benefit of reduced risk healthy people face given that they

might get sick in the future (health risk): these innovations might improve their welfare if they were to

get sick. Second, the conventional formulation does not account for the financial risk that sick people

face, namely when someone is sick they also face a cost shock from buying more expensive treatments

and potentially lower wages. Finally, the conventional measure treats costs paid by the patient and the

insurer equally. This ignores the benefit of insurance where risk is spread from sick to healthy individuals.

The bias in the conventional approach’s measure of the effect of innovation is ambiguous. Higher quality

treatments dampen the health shock of being sick. However, if those treatments also have higher costs,

then costly new innovations can increase financial risk. This financial risk can be partly mitigated by

health insurance.

To incorporate these factors we consider the ex-ante risk for an individual, prior to knowing whether

they will be sick. Let π denote the probability of a individual getting sick. Sick individuals pay P out

of pocket for medical care and all individuals pay I for insurance costs. We assume that health status

in the healthy state, HW , does not vary with the innovation. In addition, we let income vary by health

status, where YW and YS denote income for healthy and sick individuals. Then, we can implicitly define

the ex-ante value of medical innovation, V ex−ante, as:

πu(YS − P1 − I1 − V ex−ante, H1) + (1− π)u(YW − I1 − V ex−ante, HW ) (A7)

= πu(YS − P0 − I0, H0) + (1− π)u(YW − I0, HW ).

Let uSi and uWi for i ∈ {C,H} denote the derivative of the utility function with respect to i in the sick

58The cost of the technology is typically including both what an insurer pays and what a consumer pays out of pocket,
under the assumption that either insurer costs will be passed through to consumers as higher premiums or that we are
accounting for the “payer” prospective, which is policy relevant if the payer is a government.
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and well states, respectively. Then taking the total derivative one can derive the amount of ex-ante

consumer welfare the new technology provides:

V ex−ante =
πuSH(H1 −H0)− πuSC(P1 − P0 + I1 − I0)− (1− π)uWC (I1 − I0)

πuSC + (1− π)uWC
. (A8)

This formulation accounts for the three mechanisms discussed above. The first term makes clear that

ex-ante there is a benefit to healthy individuals, as they may get sick with probability π, in which case

they will get the health benefits of innovation: H1 − H0. Second, we differentiate between uSc and

uWc , which allows sick and healthy consumers to have different marginal utilities of consumption, which

incorporates financial risk. When patients are sick, they have lower wages, so their marginal utility

of consumption can be higher. This happens concurrently with their medical expenses being higher.

Finally, sick individuals receive the benefit of insurance, as I shifts costs from sick individuals to healthy

individuals.

We follow many of the assumptions in Lakdawalla et al. (2017) to parameterize this new formulation

for the value of innovation. In particular, we assume that utility takes the additively separable CRRA

form:

u(C,H) =
C1−σ − 1

1− σ
+
H1−σ − 1

1− σ
. (A9)

This functional form assumption allows us to pin down the marginal utility of consumption terms, uSC
and uWC . To do this, we follow Lakdawalla et al. (2017) and assume that σ = 2, that full income

in a well state is $120,000 and that income in the sick state is 80% of that in the healthy state.

The full income includes the value of non-health consumption, such as the value of leisure. The later

assumption is to account for sick individuals’ lost wages. We use the observed out-of-pocket costs for

each condition to calculate Pd,t. In our data the out-of-pocket costs are extremely muted by insurance.

Conditions like cystic fibrosis, multiple sclerosis, and lung cancer have out-of-pocket costs that are less

than 5% of the total amount paid because patients hit their out-of-pocket maximums. For cheaper

conditions like hypertension and asthma, insurance covers between 60-80% of the cost. We assume

insurance is actuarially fair and higher costs to insurers are fully passed through to all individuals, sick

or healthy.59 Therefore, if we add up the total cost of treatment in the population and divide by the

number of individuals with the condition, we obtain the lifetime cost of treatment, Sd,t, as used in the

main specification that ignores insurance. We measure π by calculating the share of individuals in our

data with a given disease.60

59To calculate insurance costs we sum up all the costs paid by insurers (i.e. total costs minus the out-of-pocket amounts,
Sd,t − Pd,t). Then, we divide those costs among the total number of enrollees in our sample, including individuals who
do not have condition d. For this exercise, Pd,t only includes the 1 year annual cost of treatment (rather than the lifetime
cost), because the one year costs are deducted from one year of consumption spending.

60We calculate the prevalence of a condition, π, in 2007. We then keep this value constant, as changing prevalence would
muddy the analysis for how innovation shapes welfare.
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To calibrate uSH , we assume the value of a life year for a sick individual,
uSH
uSC

, is $100, 000 in 2007. After

that, we allow the level of health in the sick state to vary over time in proportion to the average QALY

estimate, but do not impose the VSLY to be equal to $100,000 in other years.61 We calibrate the VSLY

in the sick state to be consistent with the conventional approach (and the main approach in our paper),

which focuses on sick individuals and therefore are implicitly assuming a VSLY for a sick individual.

The results in the main paper are consumer welfare for just the sick individuals, and it is assumed there

is no welfare gain for individuals that are not sick. In this section, we measure welfare gains for both

the sick and healthy populations. To make these measures comparable, we divide our ex-ante consumer

welfare by the share of the population that is sick, π, V
ex−ante

π . After dividing by π, the ex-ante consumer

welfare measure is comparable to our conventional measure as both are measures of consumer welfare

per sick individual.

Table OA12 presents results for Hepatitis C. Columns 1-3 reproduce the conventional welfare, health

benefit, and cost estimates from Table 2, respectively.62 Columns 4-6 provide results using V ex−ante

π .

Column 4 presents the full ex-ante value, while column 5 presents just the health benefit (the first term

in Equation A8) and column 6 presents the impact the value of the cost change on utility (the second

and third term in Equation A8).

Table OA12. Comparing Consumer Welfare With Different Utility Functions: Hepatitis C

(1) (2) (3) (4) (5) (6)
Conventional

Change in

Consumer
Welfare

Conventional
Change in

Health Benefit

Conventional
Change in

Cost

New
Change in

Consumer
Welfare

New
Change in

Health Benefit
on Utility

New
Change in

Cost
on Utility

2007 0 0 0 0 0 0
2008 2,559 5,635 3,076 5,862 8,942 3,080
2009 6,243 5,706 -537 9,570 9,056 -514
2010 4,807 5,995 1,188 8,282 9,514 1,232
2011 19,201 79,091 59,890 64,700 124,777 60,077
2012 17,477 84,977 67,500 66,166 133,994 67,828
2013 27,125 81,364 54,239 73,806 128,358 54,552
2014 -76,440 223,112 299,552 47,328 347,191 299,863
2015 94,318 268,925 174,607 243,007 418,135 175,128
2016 171,308 269,489 98,180 320,685 419,556 98,871
2017 214,060 283,747 69,687 371,196 441,561 70,366
2018 275,433 283,763 8,331 433,069 442,062 8,993

Notes: This table presents results for hepatitis C using the conventional measure of welfare and the measure incorporating

risk. Columns 1-3 reproduce the conventional welfare, health benefit, and cost estimates from Table 2, respectively. In

Table 2 in the main text, these are column 5, column 1 times $100,000, and column 2 minus $41k. Columns 4-6 provide

results using V ex−ante

π
. Column 4 presents the full ex-ante value, while column 5 presents just the health benefit (the first

term in Equation A8) and column 6 presents the impact the value of the cost change on utility (the second and third term

in Equation A8).

61If we held the VSLY fixed at $100, 000, then new expensive drugs would increase the marginal utility of health, because
they increase the marginal utility of consumption and we are holding the ratio constant. This would mean that the health
contribution to utility from drugs with the same QALY estimate would be increasing in their cost, which we do not think is
reasonable. Instead, in our approach the VSLY will rise when drugs are cheaper, because individuals are able to consume
more, which is consistent with Murphy and Topel (2006).

62In Table 2 in the main text, these are column 5, column 1 times $100,000, and column 2 minus $41k.
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In general, the impact on utility from the costs of these technologies is larger using the new framework

than the conventional measures (column 3 versus column 6). This is because sick individuals pay higher

health care costs with innovation, which causes the marginal utility of consumption to be higher for sick

individuals due to the curvature of the utility function.63 Sick people also have to pay out-of-pocket

costs for their treatments (alongside possible labor market impacts), which means that the utility cost

of the price of more expensive treatments is larger than the conventional case with no risk. As discussed

above, this is capturing the financial risk created by innovation, so more expensive treatments mean

that the financial shock of being sick is larger. However, individuals in our data pay a tiny fraction of

the financial cost for these really high cost drugs (for hepatitis C this is less than 5%), which minimizes

the financial risk, hence the differences are small. If individuals were uninsured, an $80k annual course

of treatment would represent about 80% of income and the utility impact of these costs would be

considerably larger.

Column 5 shows the health benefit is larger with the new measure. This is because it dampens the risk

of a health shock, which occurs with a consumption shock. Individuals receive a health benefit when

their marginal utility is higher because πuSC + (1−π)uWC < uSC , which means the first term in Equation

A8 is larger than the first term in Equation A6.

Table OA13. Summary Comparing Consumer Welfare With Different Utility Functions

(1) (2) (3) (4) (5) (6)
Conventional

Change in

Consumer
Welfare

Conventional
Change in

Health Benefit

Conventional
Change in

Cost

New
Change in

Consumer
Welfare

New
Change in

Health Benefit
on Utility

New
Change in

Cost
on Utility

Asthma -11 225 236 76 340 264
Atrial Fibrillation 3,292 44,303 41,011 26,970 68,228 41,258
Colon Cancer 128,812 -3,977 -132,788 126,434 -6,369 -132,803
Cystic Fibrosis -1,986,003 23,207 2,009,210 -1,973,434 36,670 2,010,103
HIV -141,116 16,739 157,855 -131,795 26,483 158,278
Hepatitis C 275,433 283,763 8,331 433,069 442,062 8,993
Hypertension 6,546 3,863 -2,683 8,018 5,304 -2,714
Lung Cancer -245,536 61,975 307,511 -209,907 97,922 307,829
Multiple Sclerosis -908,444 41,930 950,374 -888,487 62,906 951,393
Osteoporosis -1,365 3,325 4,690 435 5,163 4,728
Rheumatoid Arthritis -158,881 22,403 181,284 -148,284 33,412 181,696
Schizophrenia 17,980 11,319 -6,660 24,473 17,829 -6,644
Venous Thromboembolism 8,296 10,237 1,941 13,903 15,989 2,086

Notes: This table presents results for all conditions in 2018 using the conventional measure of welfare and the measure

incorporating risk. Columns 1-3 reproduce the conventional welfare, health benefit, and cost estimates from Table 4. In

Table 4 in the main paper, these are column 5, column 1 times $100,000, and column 2 times column 3 minus 1. Columns

4-6 provide results using V ex−ante

π
. Column 4 presents the full ex-ante value, while column 5 presents just the health

benefit (the first term in Equation A8) and column 6 presents the impact the value of the cost change on utility (the

second and third term in Equation A8).

63To see this, first consider the full insurance case. In that case, P1 = P0 = 0 in Equation A8, and It is just the total
cost of the drugs, spread across the entire population. Because P1 = P0 = 0, the I1 − I0 term can be factored out
of the second and third terms of Equation A8, the marginal utility terms and πs cancel out. Ex-ante, an individual will
have to pay their share of the cost of the drug in either state, so there is no risk. Hence, the insurance value equals
the conventional cost. If insurance is not perfect (Pt 6= 0), then the costs are shifted towards the sick state, when the
marginal utility of consumption is higher.
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Table OA13 summarizes results for all conditions in 2018. Results are consistent with the table for

hepatitis C. The health benefit tends to be considerably larger. The cost is also larger, but the impact

is more muted. On net our measure suggests that benefits of innovation are understated using the

conventional measure, and often considerably so. However, even with this new approach, five of the six

conditions which had declining consumer welfare with the conventional approach, also have declining

consumer welfare using the new measure.

OA.C.3 Market Expansion

In this section we explore how market expansion would impact our results. New drugs may expand the

market if they are more effective or treat variations of the condition that older treatments do not treat.

In addition, drugs coming off patent could also increase the market if lower prices increase demand.

To quantify the effect of market expansion, we identify the improvement from taking “no treatment”

to taking a specific treatment. Most conditions have observations where one of the treatments in the

CEAR data is “no treatment,” “best supportive care,” “placebo,” or something similar. We assume

these observations are similar to not being treated and include that category as no treatment in the

Tufts regressions (Equation 4). Let Hd,t be the health benefit of someone taking the bundle average

treatment in year t. Likewise, let Hd,no be the health benefit associated with no treatment, which is

measured using the “no treatment” observations in the Tufts.

We assume the market expansion effect can be measured by the increase in the number of patients

taking treatment, relative to 2007, Nd,t − Nd,2007, where Nd,t is the number of patients treated in

year t. The change in quality is now the sum of the change in quality for those taking the treatment,

Hd,t − Hd,2007, and the quality benefit from market expansion, Hd,t − Hd,no. To make these results

comparable to the results in the main paper, we define our change in QALYs and welfare in per-patient

terms in 2007. Formally, the change in QALYs can be denoted:

Nd,2007 × (Hd,t −Hd,2007) + (Nd,t −Nd,2007)× (Hd,t −Hd,no)

Nd,2007
.

The numerator is simply the sum of QALYs from those continuing to take the treatment (the first term

in the numerator) and the expansion term—the QALYs from the newly treated patients in the market

(the second term in the numerator). The denominator divides through by the number of patients in

2007 to keep units consistent with the main results in the paper. The interpretation, both with and

without market expansion, corresponds to the number of QALYs gained per patient in 2007, regardless

of whether the number of patients changed over time.64 We define costs of market expansion in a

similar way.

64To give a concrete example, suppose there are 10 patients in 2007, and the average QALY in 2007 is 1. Now, suppose
there are 20 patients in 2018 with an average QALYs of 2. Also, suppose that “no treatment” is associated with 0.5
QALYs.

Without market expansion, like in the main text, we would estimate (2-1=) 1 additional QALYs in 2018. With market
expansion, it our estimate would be:
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Table OA14 shows results for all conditions in 2018.65 The first three columns match Table 4, for

reference. The last three columns present the results with market expansion. For nearly every condition,

we do find that QALY gains are larger when considering market expansion. In general, we find much

more market expansion from new innovations, rather than conditions where drugs are going off patent.

The gains are considerable for cystic fibrosis, multiple sclerosis, and HIV. The gains in QALYs is driven by

two forces, the size of market expansion and the improvement from no treatment. For cystic fibrosis, the

share treated only increases by about 6%, but no treatment is considerably worse, leading to a doubling

in QALYs produced. HIV and multiple sclerosis both have larger expansions (20-30% increases in the

share treated), but no treatment is also significantly worse than any treatment for these populations,

hence the disproportionately large increase in QALYs. For hepatitis C, the number being treated in

2018 is slightly smaller than in 2007 (after a spike in 2014-2015), so the change in QALYs in 2018 is

somewhat smaller when accounting for market expansion.

However, costs also rise in a proportionate manner, so consumer welfare for cystic fibrosis and multiple

sclerosis is lower when accounting for market expansion, even though QALYs rise by so much. These

drugs were not cost effective, so having more people taking them does not necessarily improve consumer

welfare.66 However, we do find that total welfare rises considerably when accounting for market expan-

sion. While these drugs may not be cost effective, more health is produced, which improves total welfare.

2.5 =
10× (2− 1) + (20− 10)× 2− 0.5

10
.

Ten patients get one additional QALY, and 10 patients get 1.5 additional QALYs from switching from no treatment.
While technically the average patient is getting 1.25 more QALYs, the 2.5 number expresses the total number of QALYs
gain, relative to the number of patients in 2007. This makes it easier to compare across tables. The interpretation is per
patient in 2007, how many additional QALYs were gained. Twenty-five additional QALYs were created and there were
10 patients in 2007, so 2.5 QALYs per patient in 2007.

65We drop asthma from this calculation because there are no “no treatment” observations in the CEAR. We also do not
have a no treatment observation for cystic fibrosis, but a study not in the Tufts, Tice et al. (2020), suggests that Orkambi
is 3.6 QALYs better than “best supportive care,” so we use that number to calibrate Hd,no.

66This does not necessarily need to be the case, as shown by HIV. These drugs were not cost effective relative to an older
generation treatment. However, the relevant QALY and cost comparison for market expansion is no treatment rather
than an older drug.
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Table OA14. Comparing Consumer and Total Welfare With and Without Market Expansion:
All Conditions

(1) (2) (3) (4) (5) (6)

∆ Avg QALYs
2018 - 2007

No Expansion

∆ Consumer
Welfare

$100k VSLY
No Expansion

($1,000s)

∆ Total
Welfare

$100k VSLY
No Expansion

($1,000s)

∆ Avg QALYs
2018 - 2007

With Expansion

∆ Consumer
Welfare

$100k VSLY
With Expansion

($1,000s)

∆ Total
Welfare

$100k VSLY
With Expansion

($1,000s)
Atrial Fibrillation 0.443 3 44 0.680 21 68
Colon Cancer -0.040 129 -4 -0.012 120 -1
Cystic Fibrosis 0.232 -1,986 23 0.468 -2,123 47
HIV 0.167 -141 17 1.920 -123 192
Hepatitis C 2.838 275 284 2.670 261 267
Hypertension 0.039 7 4 0.027 5 3
Lung Cancer 0.620 -246 62 0.312 -108 31
Multiple Sclerosis 0.419 -908 42 1.066 -1,258 107
Osteoporosis 0.033 -1 3 0.024 -2 2
Rheumatoid Arthritis 0.224 -159 22 0.382 -185 38
Schizophrenia 0.113 18 11 0.216 25 22
Venous Thromboembolism 0.102 8 10 0.115 8 12

Notes: This table presents results for all conditions in 2018 without market expansion (columns 1-3) and with market

expansion (columns 4-6). The first two columns match Table 4. Asthma is dropped from this table because we did not

have a measure of “no treatment” in the CEAR data. All estimates assume $100,000 VSLY.

For non-innovative conditions with few new entrants, market expansion effects are much more muted.

For colon cancer and hypertension we do not find much market expansion. Accordingly, both consumer

and total welfare are mostly unchanged or even slightly lower when considering market expansion. This

is consistent with Duflos and Lichtenberg (2012); Castanheira et al. (2019) who find generic entry

reduces market size, potentially due to reduced advertising.

While not necessarily true in every case, we think these results suggest that our preferred results (without

market expansion) may be understated, but in both directions. Entry of drugs which are not cost-effective

will lower consumer welfare, and accounting for market expansion will suggest a bigger reduction in

consumer welfare if these treatments lead to more people getting treatment. However, these drugs are

still improvements over earlier generations or no treatment, so not accounting for market expansion will

also understate the health benefits and total welfare gains. While we think these results are informative,

we prefer the results without market expansion because these results are heavily influenced by estimates

of the relative QALYs of no treatment. There are a few issues with the no treatment category: (1) unlike

cases where we are comparing two specific treatments, we are not as confident in what no treatment

means in the CEAR data; (2) we are not sure that no treatment is consistently defined across studies

in the CEAR data (in fact, we are grouping together different definitions of no treatment); and (3)

because of (1) and (2) we are not sure the no treatment definition in CEAR is the same as that in the

MarketScan data.
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