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Abstract Big data off ers potentially enormous benefi ts for improving economic 
measurement, but it also presents challenges (e.g., lack of representativeness 
and instability), implying that its value is not always clear. We propose a 
framework for quantifying the usefulness of these data sources for specifi c 
applications, relative to existing offi  cial sources. We specifi cally weigh the 
potential benefi ts of additional granularity and timeliness, while examining 
the accuracy associated with any new or improved estimates, relative to 
comparable accuracy produced in existing offi  cial statistics. We apply the 
methodology to employment estimates using data from a payroll processor, 
considering not only the improvement of existing state-level estimates, but 
also the production of new, more timely, county-level estimates. We also 
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produce new county-level estimates that could provide more timely granular 
estimates than previously available. We develop a novel test to determine if 
these new county-level estimates have errors consistent with offi  cial series. 
Given the level of granularity, we cannot reject the hypothesis that the new 
county estimates have an accuracy in line with offi  cial measures, implying an 
expansion of the existing frontier. We demonstrate the practical importance 
of these experimental estimates by investigating a hypothetical application 
during the COVID–19 pandemic, a period in which more timely and granular 
information could have assisted in implementing eff ective policies. Relative to 
existing estimates, we fi nd that the alternative payroll data series could help 
identify areas of the country where employment was lagging. Moreover, we 
also demonstrate the value of a more timely series.
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1. Introduction

Economic statistics rely extensively on household and business surveys. While survey response

rates have declined, threatening the reliability of traditional survey data sources, technological

advances have led to a tremendous expansion in the availability of “big data” sources. Big

data offers potentially enormous benefits, including improved accuracy and coverage, faster

production, cost savings, and new insights, all of which may help provide more useful

information to the public and policymakers (Abraham, 2022). The benefits and unique

insights from these data have been realized in numerous research studies, especially during the

pandemic as the demand for timely and granular information ballooned (e.g., Aladangady et al.

(2019), Autor et al. (2022), Chetty et al. (2020), Cox et al. (2020), Cajner et al. (2020), and

Dunn et al. (2021)). However, big data sources also raise measurement concerns, including

issues related to quality—big data may be messy and unstructured—and coverage—big data

are not typically constructed to be representative of the population (Abraham, 2022). These

problems may bias or diminish the accuracy of potential statistics, casting doubt on the

utility of these data for statistical agencies. This paper lays the groundwork for a streamlined

architecture that integrates traditional and big data sources by developing a method to

systematically measure the benefits and costs of that integration. We consider these ideas in

the context of improving regional employment statistics using big data sources.

While “big data” is itself a relatively new concept, statistical agencies have long traded

off accuracy for timeliness and granularity when comprehensive data is delayed. There are

numerous examples. The U.S. Bureau of Economic Analysis (BEA) publishes timely “advance”

national gross domestic product (GDP) statistics that are revised multiple times as more

accurate information becomes available from the U.S. Census Bureau (hereafter, Census) and

from other sources.3 In this paper, we consider the specific case of the Current Employment

Statistics (CES) survey data, a principal indicator of employment for the United States. The

U.S. Bureau of Labor Statistics (BLS) publishes these data at the state level with a delay of

approximately 5 weeks, even though more accurate information becomes available later from

the Quarterly Census of Employment and Wages (QCEW), a far more comprehensive census

of the U.S. workforce.
3The geographically most accurate information for regional GDP estimates is available only every 5 years

with each Economic Census, yet BEA publishes state-level statistics at an annual and quarterly frequency.
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In each of these cases, the agencies have decided to publish data to provide more timely or

granular information to the public, even though more accurate information is available in the

future. This trade-off—whether made implicitly or explicitly—can in many cases be measured.

Revisions observed between agencies’ initial and final statistics at various increments of

timeliness, aggregation, and granularity reveal the trade-offs that these agencies are presently

accepting. Observed revisions offer a useful benchmark that may be applied to measure the

value of improved estimates or new estimates.

Conceptually, the trade-offs among the various estimates produced by the statistical system

may be viewed along a production possibility frontier, reflecting the competing goals to

produce the most accurate estimates possible, but also produce the most timely, relevant,

and granular statistics. The main idea is illustrated in Figure 1. The key question is whether

big data can be used to expand the existing frontier of economic measurement by increasing

the accuracy (i.e., reducing revisions) of existing estimates or producing new, granular, and

more timely estimates than previously possible.

We focus on the potential benefit of big data to provide more granular and timely information

about employment statistics than is available from traditional sources. We make two main

contributions: First, we develop a framework for assessing economic statistics that weighs the

potential benefits of additional timeliness and granularity against potential bias and noise of

these estimates. The foundation of the assessment that we propose is built from information

on the errors currently observed in official measures to establish a benchmark, which may

be viewed as the current frontier. Second, we apply the framework to assess the value of

adding an alternative data source from a payroll processor to improve or expand on published

statistics of employment. In other words, we measure whether the frontier can be expanded

along some dimension, such as improved accuracy, timeliness or granularity relative to existing

statistics.

Specifically, we apply these ideas to consider the value that data from a payroll processor

may add to existing published employment statistics from the CES at the regional level. We

use data from a major payroll processor that administers payroll services for hundreds of

thousands of clients and pays over 5 percent of private-sector employees in the United States,

primarily covering small and medium-sized businesses. Certain limitations of CES suggest

that additional payroll data may add some unique value. One limitation is that the CES data

is a survey, so there is some loss of accuracy relative to the QCEW estimates, so it is possible
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Figure 1. Conceptual Production Frontier of Economic Measurement

Notes: The figure provides a conceptual production possibility frontier showing a trade-off between the
accuracy of a statistics and its granularity or timeliness. The blue line captures the existing frontier of the
statistics. The red line represents the potential expansion of the frontier with the introduction of big data.

that combining the CES data with payroll data could produce more accurate estimates of

state or metropolitan statistical area (MSA) employment than is produced currently by using

CES alone. In addition, the CES estimates are available at the state level and for some

select MSAs, but not available at the more geographically detailed county level. The payroll

data, which we use at the county level, can be used in combination with CES to produce

county-level estimates of employment. To potentially improve estimates at the state level or

produce new county-level estimates, we use the established relationship between the CES

initial estimates and final estimates based on QCEW as a benchmark.

In the background of this analysis, a critical detail lingers regarding how precisely to incorporate

the information contained in an alternative data source into official statistics. We view this

as comprising two steps: First, it is necessary to obtain the best signal possible from an

alternative data source, the payroll data in this case. Next, it is necessary to determine how
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to use the alternative series, potentially combining the constructed series in a model with

other available information to estimate a statistical series with desirable properties. In our

application, we find that to add value, this first step is of critical importance. The input series

from the payroll data is constructed to remove certain sources of noise, and in particular,

focus on a rolling panel of employers, similar to the methodology that currently applies to the

CES estimates. We demonstrate that this alternatively constructed constant-employer series

has substantially more explanatory power than a raw or unadjusted payroll series.

Applying the refined payroll series, we use statistical models to construct estimated series

in an attempt to improve on existing measures (that is, we apply the second step noted

above). Specifically, we construct measures to improve on the existing CES state-level, 2-digit

industry series, and we also produce a new county-level, 2-digit industry series. Next, with

these series, we apply one last critical step, to construct cross-validation performance metrics

to formally evaluate how well the new estimates perform relative to the existing economic

measures. Using our best performing series, we find that these payroll data can provide

increased accuracy (i.e., reduced revisions) when used in the process of estimating official

statistics, thereby expanding the production frontier of statistical agencies. More precisely,

we find that when CES is used in combination with payroll data, accuracy improves and

errors are reduced in state-level estimates, reducing mean absolute error by 8–11 percent

overall. We find around a 19 percent improvement in mean absolute error when we focusing

on industries and mid-size employment cells where the payroll data adds significant value.

These industry-employment categories where we observe substantial improvement account for

around 50 percent of the state-industry cells and 39 percent of employment.

At the county level, there are no current official CES estimates, so determining whether

estimates at this level of granularity meet or exceed existing standards poses a unique challenge.

To address this issue, we develop a new methodology that uses existing official measures to

establish the expected “frontier" given the level of granularity. An important contribution

of this paper is that we develop a statistical test of whether the county level estimates are

consistent with the existing frontier. This is the first statistical test that we are aware of

that tests whether a new series meets or exceeds the standards implicit in official statistics.

We find that our newly produced county estimates meet or exceed the level of accuracy

needed for that level of granularity. In other words, we cannot reject the null hypothesis that

the county estimates are consistent with the existing standards. In addition, we find that

compared to using the associated MSA or state CES estimates applied to counties (e.g., using
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CES estimate for the corresponding counties within an MSA), the county level estimates

improve mean absolute error by 9–13 percent. In summary, we produce county-by-industry

level estimates with error rates that are reasonable based on the existing frontier, offering

additional geographic granularity not previously possible.

We focus on the combined payroll and CES series for much of our analysis as the revised

payroll data series alone produce errors that are higher than the CES estimates. However, we

show that in times of greater economic volatility, the signal to noise ratio increases in the

payroll data, providing a more meaningful signal of local employment that is more timely than

the CES. In other words, the timeliness of the payroll data becomes more valuable during

large economic fluctuations, precisely when economic measurement is most important.

We explore the practical importance of timely and granular estimates from alternative data

series by examining an application, which is motivated by the economic stimulus initiated at

the onset of the COVID–19 pandemic. Numerous programs were implemented at a national

level to address the pandemic, including stimulus checks, expanded unemployment benefits,

and the Paycheck Protection Program (PPP). During the onset of the pandemic, there

was limited timely information available, making precise targeting of the funds challenging,

and prompting broadly targeted stimulus. The PPP was intended to be more targeted to

saving jobs for employers needing assistance, but subsequent research by Autor et al. (2022)

and Chetty et al. (2023) demonstrates that the costs associated with the PPP were around

$150k–$300k per job saved. This raises the question of whether more timely and granular

information could help improve policy decisions and lower the cost of achieving specific policy

goals.

Rather than examine a specific policy, we examine counterfactual scenarios around the

pandemic to demonstrate how more timely and accurate information might help improve

targeting and the efficient allocation of resources. The analysis we consider is how well the

timely payroll data could help identify the industry-county pairs that were hardest hit by the

pandemic. We find that the more timely payroll data alone performed substantially better

than assuming areas were affected equally, providing useful information during this especially

sharp downturn in the economy. In the months following the pandemic, we also show that the

combined payroll-CES data can improve the accuracy of identifying the hardest hit counties

by around 13%, relative to the CES estimates alone.
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Our discussion and reporting of these errors and inherent trade-offs is in the spirit of Manski

(2015), which advocates for statistical agencies to better communicate estimates of uncertainty.

A contribution of our paper is to communicate that economic measures are produced with

some error, and this is not a mistake of the statistical system. The errors are a natural part

of the production possibility frontier of the agencies attempting to produce both the most

accurate statistics, with the fewest revisions possible, and also more timely and granular

statistics, which may have additional error.4 The additional error of the detailed statistics has

the added benefit of providing unique and actionable information to policymakers and the

public.

Our paper also builds on comments in Abraham (2022), which notes that statistical agencies

should be asking whether the incorporation of alternative data into official statistics results in

statistics that are of similar or higher quality. We agree that this is an important idea, but it

also raises challenging questions. When are new statistics considered to be of similar quality

or an improvement? What if national statistical offices are producing a range of statistics of

varying accuracies? Our paper provides a framework for answering these questions. Indeed,

the goal of this paper is to lay out a methodology to clearly expand the frontier of economic

measurement. Formalizing these ideas not only assists in measuring the value of new data

at the agencies and whether the production of a new series is worth it, but it also helps in

communicating to data users the value of new data sources.

In the next section, we discuss some background literature leading up to this work. After this,

we discuss the data sources, with particular focus on details such as how they are constructed

and how this affects the accuracy and timeliness of statistics produced from these sources.

Next, we dedicate a section to a study of the accuracy of existing official statistics, including

the preliminary CES in predicting revised CES or in predicting QCEW, expanding on the

concepts illustrated in Figure 1. The next section is dedicated to the statistical methods we

use to model CES or payroll information (or to integrate information from both) to produce

early estimates of employment by state or county and by industry. Finally, we provide an

application motivated by policies during the pandemic, to demonstrate the usefulness of more

granular and timely data.

4For example, the mission statement of BEA is to promote: “... a better understanding of the U.S.
economy by providing the most timely, relevant, and accurate economic accounts data in an objective and
cost-effective manner."
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2. Background

In recent years, several studies have used big data for novel measures of economic activity

(Aladangady et al., 2019; Autor et al., 2022; Chetty et al., 2020; Cox et al., 2020; Cajner

et al., 2020; Dunn et al., 2021). All of these data sources benchmark off of official data

sources and have also proven useful throughout the pandemic recovery. Our work most closely

builds off of Chetty et al. (2023). Chetty et al. (2023) is particularly noteworthy as they

develop multiple private-sector data sources, including multiple payroll sources, to understand

trends around the pandemic, and also make these series available to the public in real time.

A major point of their paper is to demonstrate the usefulness of private-sector data for public

statistics, encouraging government statistical agencies to build on this work by generating

complementary statistics. Our paper is intended to move this agenda forward by demonstrating

objective improvement in official measures and expansion of the frontier currently offered by

official statistics.5 Perhaps as important as showing where the private-sector alternative data

adds value, we are also able to show where the value is more limited, ensuring that the focus

is on the best available estimates.

To emphasize the points made earlier, statistical agencies are very familiar with the idea of

working with various data sources of differing accuracy, timeliness, and granularity. Currently,

BEA publishes a whole collection of quarterly national accounts statistics 1 month, 2 months,

and 3 months after the end of each quarter, with revisions between each publication. These

statistics include component (sector) detail as well as industry detail for the business sector.

BEA draws on a variety of data sources, including from statistical agencies at Census and BLS,

but also numerous private-sector data sources, as emphasized in Moyer and Dunn (2020).

BEA also publishes a revision of these statistical series each year and benchmarks them every

5 years based on the most recent economic census. In addition, BEA publishes a similar (if

somewhat less complete) set of statistics by state for each quarter and annually publishes

GDP and other statistics by county.

Census has numerous examples of this idea as well. Census produces an advance estimate

of monthly retail sales as well preliminary and revised estimates 1 and 2 months later,

respectively.6 The monthly data is then revised using an survey information from the Annual
5This goal is related to that of Chen et al. (2019), who focus on reducing revisions for the services

component of GDP.
6The advance measure is produced using the Advance Monthly Retail Trade Survey whereas the preliminary
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Retail Trade Survey (ARTS). These surveys are then followed by even more complete economic

census measures. Similarly, BLS publishes a variety of employment statistics, including monthly

information from the CES. CES-based statistics are later revised based on new information,

especially when QCEW information becomes available. It is this last example that we focus

on in-depth in this paper. Across all of the agencies there is a long history of using a variety

of data sources and updating estimates as more complete information becomes available.

3. Data

In this section we detail the relevant features of the data that we consider, including the

information source from which the statistics are constructed, timeliness (the elapsed time

between the reference period and publication), and measures of accuracy. Our work focuses

on three main data sources: CES, QCEW, and payroll data, which we discuss in turn below.

Because the CES and QCEW are well-established sources of employment information, we

include only a general overview of these programs. In contrast, the payroll data source is

discussed in more detail, with some space dedicated to a discussion of the construction of

these data. Finally, because we are focused on potentially reducing the latency of employment

information, we provide a detailed discussion of the timing of the availability of CES statistics

and payroll information (the latter being somewhat customizable).

3.1. Current Employment Statistics (CES)

The CES survey is conducted by the BLS and provides timely and detailed information about

employment in various industries and geographic areas across the United States. The CES

program is known for its timeliness, as its employment statistics are published on a monthly

basis, usually within the first week of the month following the reference month. The CES

sample covers around 27 percent of employment, and samples larger firms at a higher rate

than smaller firms.7 For example, the employment statistics for March generally come out in

the first week of April at the national level, although there is more latency in the regional

statistics, which usually come out approximately 2 to 3 weeks after the national estimates.

and revised estimates are produced from the Monthly Retail Trade Survey responses.
7The use of sample weights in the estimation process prevents larger or smaller firm bias (See

https://www.bls.gov/web/empsit/cestn.htm#tb1).
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These statistics allow policymakers, businesses, and economists to closely monitor changes in

employment and economic trends, although even more timely information could arguably be

beneficial during economic shocks, such as during the COVID pandemic.

CES publishes data at various geographic resolutions, including national employment statistics

and employment statistics by state and for metropolitan areas. This granularity allows users

to analyze employment trends in specific areas, helping to inform local economic decisions

and strategies. However, statistics by county and finer granularities are not available from

CES.

The published CES numbers are revised as more information becomes available, especially

after statistics from the QCEW are published for the reference quarter. For our analysis, we

are working with monthly employment statistics from CES at the state and metro area from

January 2013 to June 2021. Our data include all vintages of these statistics, and we evaluate

the accuracy of the estimates using a real-time concept.

3.2. Quarterly Census of Employment and Wages (QCEW)

The Quarterly Census of Employment and Wages (QCEW) is a vital data source maintained

by BLS that offers comprehensive insights into employment, wages, and establishments across

various industries in the United States. The data are collected through mandatory quarterly

reporting by employers to state workforce agencies, which verify and compile the data before

submitting it to BLS. It includes information on job numbers, total wages, and average

wages, broken down by industry, geography (from national to local levels), and establishment

characteristics.

The QCEW is more comprehensive and accurate than CES at a granular level because it covers

nearly all employers, provides detailed establishment-level data, and offers finer geographic

and historical detail. Because the QCEW is more accurate, it is used in the process of revising

the CES data. CES data is adjusted to align with QCEW figures, improving the accuracy

of CES estimates and ensuring they better reflect actual employment trends. This revision

process occurs annually and helps fine-tune the reliability of CES data.

However, the more detailed QCEW data is only available with a substantial latency of about
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6 months after the reference quarter. This implies that the more accurate information cannot

be used to inform the public in a more timely manner. The QCEW data that we use in our

analysis provides monthly employment data and covers the time period from January 2017 to

June 2021.

3.3. Private-Sector Payroll Data

The payroll data we use is from a company that provides payroll services to businesses,

particularly small and medium-sized enterprises (SMEs) in the United States. As part of their

regular business, the payroll processor collects detailed microdata on employment. The payroll

data covers over 5 percent of private-sector employment. Because the company processes

the payroll microdata, the estimates generated from the data are customizable in regards to

timeliness and granularity. All data used in this work is aggregated and anonymized (see the

Appendix for more details).

Similar data was used by Chetty et al. (2023), who demonstrated how private-sector data

sources, like the one we use here, could be used to generate insights around the pandemic. In

addition, they were able to provide the associated data source to the public. Our analysis

builds off their work, and focuses specifically on how data from the payroll processor can add

value, relative to existing official statistics.

The payroll data is a convenience sample, so the properties of the data and coverage match

those of the payroll business, which specializes in helping small and medium-sized businesses.

In addition to being balanced toward SMEs, the sample reflects the payroll processing business

environment, which varies across industries and geographies.

3.3.1. Alternative Samples of the Payroll data

Alternative data sources, such as the payroll data set we are working with, have limitations

because they are based on convenience samples that may not be representative of actual

changes in the economy. For example, if the market share of the payroll processor were

to increase substantially, using the raw data would suggest a large, fictitious increase in

total employment. Numerous examples in the literature suggest that how these alternative
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data sources are constructed may have important implications for the data signal extracted,

including for card transaction data (Aladangady et al., 2019), medical claims data (Dunn

et al., 2014), and employment data (Cajner et al., 2020). In each case, the study sample

varies with the business practices of the data contributor, which does not necessarily reflect

the broader economic activity that researchers are attempting to capture. For employment,

Cajner et al. (2020) hold the employer constant from period-to-period and examine changes

in employment over time (which is also a similar approach to how the CES is constructed).8

At the same time, it is not immediately obvious that holding the employers in the sample

constant is preferable, as it will miss entry and exit from the sample. In particular, Chetty

et al. (2023) examine unadjusted payroll data immediately around the pandemic, a period

of time when the effects of entry and exit in the economy are a dominant feature.9 In our

analysis, we construct both samples, full unadjusted payroll data and a continuing sample,

and we evaluate the signal from each.

3.4. Timeline of Estimates—CES and Payroll Data

The CES program publishes statistics on fixed timelines, whereas it is feasible to compute

payroll data at varying delays relative to the reference period. However, reductions in latency

are associated with losses of information. Figure 2 shows the timeline of both data sources.

For the CES, the reference period is the pay period that includes the 12th day of the month.10

In our example, we focus on the reference period of March 12, to maintain comparability with

CES. For this reference date, the state and MSA-level data is not available until around the

third week of the following month, April 21 in this example.11

The information from the payroll processor is instantaneous. Therefore, the timeliness of the
8Aladangady et al. (2019) examine card transactions based on a large card processing intermediary, Fiserv,

and find they obtain a better signal by constructing data based on a rotating panel of merchants. Dunn et al.
(2014) examine claims data from a data source that includes multiple contributors from large employers and
insurance companies, and they find more stable estimates by holding the data contributors in their sample
constant over time. In addition to tracking employers over time, the BLS also applies a firm birth-death
model to account for entering and exiting employers.

9The methodology of Chetty et al. (2023) does make adjustments for extreme outliers, but does not rely
on a continuing sample.

10For example, if a company pays biweekly and their payroll covers the period from March 5 to March
18, they will report payroll for that period. Similarly, monthly payroll or weekly payroll that includes that
reference data is similarly recorded. If the 12th day of the month falls on a weekday, the reference period
includes that day. If it falls on a weekend or holiday, the reference period includes the nearest weekday.

11It is worth noting that the CES data at the national level is available with less of a lag; recall that it is
generally the first week after the reference month, so the first week of April in this example.
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Figure 2. Timeline of Current Employment Survey and Payroll Data

Notes: This figure shows the timeline of the CES and the payroll data. The line represents a timeline of dates.
The top portion of the figure shows the key dates for CES. March 12 is the reference period we focus on in
the figure. The state-level and MSA-level estimates for this reference date are not available until April 21,
about 5 weeks after the reference period. National estimates, not shown here, come out about 3 weeks after
the reference date. The bottom portion of the figure shows the timing of the payroll data that we examine.
Recall that the data is customizable, but we have chosen to analyze four cuts of the data. Employment
estimates 1 week, 2 weeks, and 3 weeks after the reference period, as well as the “final” estimates, which
includes all payments and adjustments at the time we extracted the data.

payroll data is customizable, so that we can examine the payroll any time after the reference

date. As shown on the bottom of Figure 2, we analyze the data 1 week, 2 weeks, and 3

weeks after the reference period, as well as the full data, which includes all subsequent weeks

and any potential corrections to payroll.

While the payroll data has no lag in payroll information, the payroll frequency of employers

affects the timing of payroll information. Returning to the example, after 1 week from the

reference period, because some of the employers are on a bi-weekly pay schedule or monthly

pay schedule, they may not yet have payroll that includes the reference date. After a second or

third week, more of those employers are likely to enter the sample, providing more information

on the payroll trends for that month. Figure 3 shows the proportion of employment reported

at each period. After 1 week, we see 50 percent of employment reported, after 2 weeks we

see over 80 percent reporting, and after 3 weeks, we have over 95 percent reporting.

Just as we analyze the different sampling strategies (i.e., full or continuing samples), we also

evaluate the signals based on payroll data with varying latencies after the select reference

period (i.e., 1 week, 2-weeks, 3-weeks, and the maximum period).
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Figure 3. Payroll Frequency and Payroll Timing
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Notes: This figure shows the share of the employment total that comes in after the reference period. While
payroll information is instantaneous, the pay frequency affects when payroll information is recorded. For
instance, employers that pay weekly will be recorded 1 week after the reference period, but those that pay
bi-weekly may not be captured. The x-axis shows the timing after the reference period, 1-week, 2-weeks,
3-weeks, or the full sample (captured by the “4” along the x-axis). The y-axis is the share of employment,
relative to the full employment based on the full sample. For example, 1 week after the reference period we
see about 50 percent of employment information is available. By definition, the full sample, indicated by a 4
on the x-axis, captures 100 percent of employment.

4. Observed Error in Employment Estimates

Before evaluating how payroll data may contribute to improving regional employment measures,

we must first evaluate the current accuracy (in other words, “tolerance for error” or “tolerance

for revisions”) in official measures of employment. Table 1 shows a table of CES errors

between the initial and the final CES estimates. We show this error at different levels of

aggregation by geography and industry. Two left-hand columns show the level of geographic

aggregation (i.e., MSA, state, or national) and industry aggregation (i.e., 3-digit, 2-digit
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or aggregate). The next three columns report alternative measures of error, including the

mean absolute error (MAE), mean absolute scaled error (MASE)12, and 1-R2. Each measure

captures alternative ways of measuring errors, and all three are measured so that lower values

indicate greater accuracy.13 The last column shows the number of observations.14

A clear pattern emerges from Table 1, which demonstrates the implicit trade-off between

granularity and accuracy. Across all three measures, we generally find that error declines

at higher levels of geographic or industry aggregation, or conversely, that error increases at

finer levels of detail. This error is presumably acceptable, as the greater detail also provides

additional information to the public regarding the industry and geography of changes in

employment.

Table 1. CES Differences (CES initial vs CES final)

Geo NAICS digits Mean Abs.
Error

MASE:
MAE/MAD(Y)

1-R2 N

MSA 3d 0.0129 0.7726 0.2998 94,172
MSA 2d 0.0119 0.7814 0.3873 157,528
MSA 0d 0.0068 0.5828 0.3856 29,024
State 3d 0.0111 0.6605 0.2136 136,207
State 2d 0.0086 0.5580 0.1636 86,712
State 0d 0.0030 0.2615 0.0339 4,876
USA 3d 0.0048 0.3221 0.0951 6,900
USA 2d 0.0032 0.2347 0.0342 2,024
USA 0d 0.0014 0.1306 0.0052 92

Notes: The first column of the table indicates the geographic unit (i.e., MSA, state, or national), the second
column indicates the industry detail using the hierarchical North American Industry Classification System
(NAICS) (i.e., 3-digit NAICS, 2-digit NAICS, or aggregate), and columns (3), (4) and (5) indicate different
measures of error. MAD is mean absolute deviation. R2 = 1 − MSE/V ar(Y ) where MSE is the mean
squared error. Observations are weighted by lagged QCEW employment. The figure shows that errors
generally increase at finer levels of industry or geographic granularity.

We produce similar measures of error at the county level in Table 2. While there is no timely

county-level estimate from CES, we assume that local information regarding employment may

still be inferred from a higher level of CES. For instance, for understanding employment in

12This is, MeanAboluteError(MAE)
MeanAbsoluteDeviation(MAD)

13For example, MASE and 1-R2 account for how much of the variation is explained by the prediction, while
MAE only captures the absolute error. In addition, MASE and 1-R2 are different as MASE and MAE are
based on L1 errors, while 1-R2 is an L2 error (i.e., a squared error).

14Due to suppression, we observe more observations at the 2-digit industry level for MSAs, relative to the
3-digit industry level.
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Montgomery County, Maryland, which is in the Washington, D.C. metro area, policymakers

in Montgomery County may look at the associated CES estimates for Washington, D.C. while

they wait for more detailed information from QCEW. In this spirit, we compute the error at

the county level between the initial CES estimate and the final QCEW estimate.15 Similar

to before, we find that the more disaggregate estimates show higher levels of error, across

all three measures. We can also see this across the two tables. For example, in Table 2 the

MAE at the 2-digit county level is 0.018, while the error at the 2-digit MSA level in Table 1

is 0.012.

Table 2. CES Differences with County (CES initial vs QCEW)

Geo NAICS digits Mean Abs.
Error

MASE:
MAE/MAD(Y)

1-R2 N

Counties 3d 0.0214 0.8907 0.6684 4,844,287
Counties 2d 0.0180 0.8779 0.6240 3,124,127
Counties 0d 0.0102 0.7511 0.5234 179,114

Notes: The first column of the table indicates the geographic unit (i.e., county in this table, in contrast to
Table 1), the second column indicates the industry detail (i.e., 3-digit NAICS, 2-digit NAICS, or aggregate),
and columns (3), (4) and (5) indicate different measures of error. CES is not defined for counties, so we
use the MSA growth rate for MSA counties and the state growth rate otherwise. MAD is mean absolute
deviation, N−1 ∑

i |yi − ȳ|. 1−R2 = MSE/V ar(Y ) where MSE is the mean squared error. Observations
are weighted by lagged QCEW. The figure shows that errors generally increase at finer levels of industry or
geographic granularity.

The main point is that there is an implicit trade-off between accuracy and granularity that

may be gleaned more clearly from Figure 4. The left panel shows a scatter plot of errors at

different levels of granularity. More precisely, the vertical access measures accuracy, so that

accuracy increases moving up the y-axis. The y-axis is specifically measured as the negative

of the log of the mean squared error (MSE). The x-axis is a measure of granularity, where

granularity increases moving farther to the right. The x-axis is measured as the negative of

the log employment level. The axis of this figure match those of the conceptual Figure 1. We

generally see from this picture that the mass of points falls as estimates become more granular,

demonstrating the trade-off between accuracy and granularity. The trade-off becomes more

stark when we estimate a fitted line over the mass of these data points, as shown in the right

panel of Figure 4.

This figure empirically describes the current production possibility frontier based on official
15For non-metro areas, we use the CES estimate for the state level to compute the error.
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Figure 4. Scatterplot of Error by Granularity and Associated Fitted Line
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Notes: The figure in the left panel is a scatter plot of the errors based on different levels of granularity. The
y-axis is actually the inverse of the errors, captured by the negative of the log of the mean-squared error (i.e.,
−ln(MSE)), so that farther out on the y-axis captures a reduction in error or improved accuracy. The x-axis
is granularity, captured by the inverse of the employment size captured by the −ln(lagQCEW ). The units
are for the corresponding geographic-industry categories from Tables 1 and 2. The figure shows as estimates
are more granular, the accuracy falls. This is more clearly shown in the right-hand panel, which shows the
lowess fitted values of the left-hand panel, indicating a clear downward slope.

statistics currently produced. While this trade-off is widely understood implicitly, this is the

first empirical documentation of this trade-off that we are aware of. Next, we attempt to

determine if the payroll data source may be used to expand this frontier.

5. Methodology

The goal of this paper is to investigate the potential for expanding the frontier of current

employment statistics. The methodological steps for accomplishing this are:

1. Define the evaluation criteria and assess the accuracy of existing statistics across

different levels of granularity or timeliness. This first step was accomplished in the

previous section, as we demonstrate how L1 and L2 errors vary at different levels of

granularity.
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2. Produce statistics based on alternative data. In the case of our analysis here, we will

focus on county- or state-level employment growth at the 2-digit industry level.

3. Apply cross-validation (described below) to determine the out-of-sample error of these

estimates.

4. Finally, evaluate the performance of the new statistics by comparing errors to existing

accuracy levels. For improving existing estimates, we want the cross-validated errors to

be lower than existing errors. For producing new estimates, we want the cross-validated

errors to fall within a reasonable range, given existing accuracy.

As a concrete example, consider the case of producing new county-level estimates at the

2-digit industry level. Based on Tables 1 and 2 we have an established accuracy level for

this level of granularity. Current CES estimates applied to the county, 2-digit level produce a

MAE of 0.018, so errors from a newly produced series would clearly need to be better than

this. Another standard we could use is the error level for the closest series that is explicitly

produced by CES – i.e. 0.012 for the MSA, 2-digit estimate. Since this series covers a higher

level of aggregation, anything approaching this would have an acceptable level of error.

Now suppose we produce alternative estimates and find a MAE of around 0.20. In this

case, the new estimate actually performs worse than CES alone, so the estimate provides no

additional value and does not expand the frontier. However, suppose we produce an estimate

that has a MAE of 0.13 for the 2-digit county level. In this case, the estimate is clearly better

than the current county-level error of 0.18, so it likely provides some information relative to

existing estimates. In addition, it is close to the MAE that we observe at the MSA level,

suggesting this is near the existing accuracy level given the level of granularity selected. We

could argue that this new estimate expands the frontier relative to existing statistics.

5.1. Model of Estimation

In this analysis, we examine the additional value of payroll data, relative to, and in addition

to, CES estimates at the regional level. We compare unmodeled estimates of CES with

alternative models that include payroll and CES. Specifically, the prediction model takes the

following form:



18

Yi,j,t = f(CESijt, Payrollijt) + ϵi,j,t (1)

where Yi,j,t is monthly QCEW employment growth for geography i, industry j, and time t.

The function f() indicates linear functional forms for growth rates derived from CES and

payroll data, where we also control for characteristics of these data sources (e.g., accounting

for payroll coverage in an industry/geography). We also allow the payroll estimate to enter

by county-industry, state-industry and aggregate county.

5.2. Cross-Validation

We evaluate the performance of the estimates by applying cross-validation. We apply two types

of cross-validations, which are shown visually in Figure 5. The first type of cross-validation is

called a cross-fold, and the corresponding visualization is shown in the top panel of Figure 5.

Cross-fold cross-validation involves dividing the dataset into k subsets or “folds,” training the

model k times on different combinations of training and validation sets, and aggregating the

results to estimate the model’s overall performance. This technique helps in evaluating a

model’s robustness, identifying potential issues like overfitting, and obtaining a more reliable

estimate of its performance. The advantage of this approach is it uses all the time-series

variation in the data to evaluate the error, but a major disadvantage is it does not match

how estimation works in practice. In practice, all geographies are estimated at a single point

in time, rather than estimating randomly selected locations across different points in time.

The second cross-validation is a rolling one-step-ahead estimation, also known as time series

cross-validation, and is shown in the bottom panel of Figure 5. Rolling one-step-ahead

cross-validation involves iteratively training a model on historical data up to a specific point

in time, and then using the model to make one-step-ahead predictions for the next time step.

This process is repeated for each data point in the time series, allowing for the assessment of

the model’s performance in a time-sequential manner. The main advantage of this approach

is that it is closer to how estimation works in practice for the series we are producing, so it is

the preferred methodology. The key limitation of the one-step-ahead cross-validation is that

it does not use the entire time series to validate the data.16

16For example, one might think with the COVID pandemic in the data series, we would be much better at
predicting future large swings in employment, so cross-fold may do a better job capturing future error rates,
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Figure 5. Cross-validation Methods: Cross-fold and Rolling One-step-ahead

Notes: The figure visually displays the two methods of cross-validation that we apply in our analysis. The
left panel shows k-fold cross-validation that randomly selects a portion of the data as a hold-out sample,
trains the model on the remaining data, then evaluates the model on the hold-out sample. This is repeated
k-times, allowing all portions of the data to be part of the hold-out sample. The panel to the right shows the
rolling one-step-ahead cross-validation method. An initial time period is used as the training sample, while
subsequent time period after the training time period, is the hold-out sample. The error is evaluated. Next,
the training time period and the hold-out sample are advanced to the next period, process is repeated. This
is done until the end of the sample is reached.

6. Results

In this section, we examine the value of adding payroll data series to estimating regional

employment estimates. To do this, we first measure the value of alternative series produced

using the payroll data set alone. Next, we use the payroll data series to examine whether we

can improve or expand on existing official series.

6.1. Evaluating Payroll Data Samples

In evaluating the payroll data source, we examine the value of different constructions of the

payroll data series.

relative to the one-step-ahead estimation that only uses the pre-pandemic period to predict variation during
the pandemic.
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6.1.1. Sample Size: Full vs. Continuing

Recall that we have produced a variety of series, one that uses the full payroll raw data and

one that uses a sample of continuing employers. One limitation of the raw data, mentioned

earlier, is that it varies with the growth of the payroll business, which may vary in ways that

are different than observed economic activity.17

The difference between the raw payroll data and the constant sample can be shown at the

regional level using simple prediction models in Table 3. The table shows various estimates

of state-by-two-digit industry on the final CES estimate. In the first column of Table 3, we

show estimates based on the initial CES estimate, where CES is unmodeled, as shown by the

coefficient held to a value of 1. The bottom of the table shows the key results of the various

cross-validation strategies, including cross-fold and rolling, as well as MAE and 1−R2. We

will primarily discuss the rolling MAE cross-validation, as it is arguably the simplest measure

that more accurately captures the real-world production process, but flag the other measures

when there are notable differences. The unmodeled CES estimate shows a MAE of 0.0088.

Column (2) of Table 3 shows the prediction of final CES using the full payroll data series.

The coefficient on the payroll employment growth rate is positive and significant, with a

coefficient of 0.12, but the MAE is substantially higher than the initial CES estimate at 0.014,

an error rate almost 60 percent above CES levels. Column (3) is the same as column (2), but

uses the payroll growth rate from the continuing sample. The coefficient on the growth rate

is 0.59, so it is substantially less attenuated than the full payroll sample estimate, and the

prediction is also substantially better, with a MAE of 0.0124. Similar results are also found

when we apply weights based on the size of the employment cells in columns (4) and (5).

Overall, this analysis shows that the economic signal coming from the continuing sample is

substantially stronger than the raw full sample. However, it also shows that both CES and

payroll are strong predictors of employment growth. This suggests that it may be beneficial

to use payroll data in combination with CES data, which we explore later.
17For example, a payroll processor may take a larger share of the market for payroll processing services,

even as the employment in the economy falls.
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Table 3. Prediction Using Full Raw Payroll Data and Continuing Sample Payroll
Data — State by Two-Digit Industry Estimates

(1) (2) (3) (4) (5)
CES Emp Gr 1

(.)

Payroll Emp Gr (all) 0.121∗∗∗

(23.21)

Payroll Emp Gr (cont) 0.586∗∗∗

(42.94)

Payroll Emp Gr (all; wgt) 0.0603∗∗∗

(24.09)

Payroll Emp Gr (cont; wgt) 0.482∗∗∗

(36.71)
Observations 41,924 41,924 41,924 41,924 41,924
1−R2 OOS (rolling) 0.177 0.823 0.371 0.430 0.430
1−R2 OOS (cf) 0.179 0.465 0.321 0.330 0.335
MAE OOS (rolling) 0.00876 0.0141 0.0120 0.0125 0.0124
MAE OOS (cf) 0.00853 0.0120 0.0108 0.0112 0.0111

Notes: This table shows how the full and continuing sample payroll data compares with the CES data. The
first column shows the predictions based on the unmodeled CES estimates, where we have fixed the coefficient
on CES estimates to 1. The second column shows the raw payroll data, and the third column shows the
continuing sample payroll data. We find that the continuing sample payroll data performs substantially
better than the full sample data, which is not surprising given the pattern in Figure 2. However, we find
that the unmodeled CES estimates perform substantially better than the two series constructed using payroll
data. Columns (4) and (5) repeat estimates from columns (2) and (3), but are weighted based on lagged
employment that incorporates QCEW.
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6.1.2. Timeliness

We also examine how the accuracy of the payroll data changes with the timeliness of the data

extracted. Recall from Figure 3 that the amount of data available from payroll processors

increases as the reference date increases, reflecting more employers submitting payroll around

the reference date.

In Table 4 we examine how the payroll series of different levels of timeliness affect the

predictive accuracy of the estimates. Column (1) of Table 4 shows the baseline CES results,

identical to column (1) of Table 3. Column (2) shows estimates using the payroll growth

rate constructed using a timely series of employment growth just 1 week after the reference

period, as well as the various cross-validation estimates along the bottom of the table. In

particular, it shows the rolling MAE to be 0.0130. Columns (3) and (4) are less timely and

are constructed 2 or 3 weeks after the reference period, and we see the cross-validated error

decreases as more data becomes available farther away from the reference date. By the third

week, all the cross-validation measures are below those of the first week.

The fifth column shows estimates based on the fully adjusted payroll data (i.e., estimates that

include all available changes or corrections to the payroll at the time the data is accessed).18

This last estimate shows no improvement relative to column four. This finding is not surprising

given that from Figure 3 over 95 percent of employment is accounted for aver the third week,

so relatively little improvement is seen using data from subsequent weeks that may have more

complete Payroll and recorded.

The unmodeled CES estimates in column (1) substantially outperform all the payroll series.

The difference is particularly large, with the L2 error of the most timely payroll series, measured

using the rolling 1−R2, being four times the size of the corresponding CES estimate.

6.1.3. Summary

There are two important points to highlight in this section. First, the CES data performs

remarkably well relative to payroll alone, which immediately suggests that the value added
18Corrections or adjustments to payroll may be run well into the future, so these data may not reflect all

future changes.
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Table 4. Prediction Using Payroll Data By Timeliness of Series

(1) (2) (3) (4) (5)
CES Emp Gr 1

(.)

Payroll Emp Gr (cont; t=1) 0.468∗∗∗

(37.92)

Payroll Emp Gr (cont; t=2) 0.603∗∗∗

(43.81)

Payroll Emp Gr (cont; t=3) 0.612∗∗∗

(44.32)

Payroll Emp Gr (cont) 0.586∗∗∗

(42.94)

Constant -0.000478 -0.000672 -0.000837 -0.000827
(-0.49) (-0.74) (-0.94) (-0.93)

Observations 41,924 41,924 41,924 41,924 41,924
1−R2 0.179 0.379 0.330 0.319 0.318
1−R2 unweighted 0.309 0.719 0.622 0.585 0.585
1−R2 (excl. 2020-03 to -05) 0.347 0.772 0.695 0.677 0.677
1−R2 OOS (rolling) 0.177 0.509 0.389 0.374 0.371
1−R2 OOS (cf) 0.179 0.383 0.333 0.322 0.321
MAE 0.00853 0.0114 0.0109 0.0108 0.0108
MAE OOS (rolling) 0.00876 0.0130 0.0121 0.0120 0.0120
MAE OOS (cf) 0.00853 0.0114 0.0109 0.0108 0.0108
t statistics in parentheses
Outcome is QCEW Emp Growth (Mean Abs Dev=0.014). Observations at the State-NAICS2-Month level.
Dates=[2017,2021-06]. Variables are NSA. [aw=L_QCEWEmp2dST].
Restricted to observations with valid CES and Payroll Growth. Non-CES Equal models include state FEs.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This table demonstrates how the signal form the payroll data changes with additional weeks from the
reference period. Columns (1), (2) and (3) show the results from the first, second and third week after there
reference period, respectively. Column (4) shows the estimate based on the complete payroll data, at the
time of extraction accounting for all additional payments and adjustments. The estimates improve with each
additional week after the reference period, as well as with the complete payroll data. Column (5) shows the
CES estimates, which performs better than all the alternative payroll estimates.
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of payroll data may be to combine payroll data with CES to examine how the combined

information may improve estimates or potentially lead to new and more granular estimates.

That is, given the current level of timeliness of the CES data, can we expand the frontier by

improving either the accuracy of existing statistics or producing more granular estimates? We

will focus on this question in the next section.

The second point is that while the payroll data is noisier than the CES data, it can also be

customized to be more timely. In other words, the payroll data can expand the production

frontier along the timeliness dimension, relative to official statistics, but if the noise in the

timely payroll data is sufficiently large, then it may not add value.

Determining the value of more timely data is challenging, as noted in Dunn et al. (2021),

the value of the more timely data may depend on the magnitude of the signal relative to

the noise, so the value of the estimates may change over time. Indeed, Chetty et al. (2023)

demonstrated the value of payroll data sources during the COVID pandemic, a period in

which the value of timely data grew substantially. We will revisit the value of payroll data as

a more timely signal in a later section.

6.2. Improving Existing Estimates — State Estimates

In this section we examine whether the payroll data can be used to improve on existing

state-level 2-digit estimates, applying simple linear models that combine CES and payroll

information. When considering the combined data, we use payroll data 3 weeks after the

reference period, as this information is available prior to the CES data and captures nearly all

the employment estimates from the payroll processor.

The results of the analysis are reported in Table 5. Column (1) reports the baseline estimates

using the unmodeled initial CES data, as shown in prior tables. Column (2) applies a linear

regression to the CES data alone, and shows no improvement relative to column (1) on

many of the metrics. Column (3) introduces a simple linear growth rate of the payroll

data. Specifically, it includes both the CES initial estimate and the payroll estimate for

the corresponding 2-digit industry category and state geography. Incorporating the payroll

data in this way improves the estimates. Finally, in column (4) we incorporate additional

information from the payroll data, including information on payroll coverage, as well as an
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aggregate measure of payroll data that combines information across industries. Incorporating

this additional information improves all of the cross-validation measures, with the MAE rolling

estimate declining by about 11%, and the cross-fold estimate declining by about 14%.

Figure 6 shows the improvement graphically and demonstrates how this combined information

from the payroll data and CES expands the frontier of existing estimates. The axis in Figure 6

include measures of accuracy and granularity that match the axis of Figure 4. Similar to

before, we plot the lowess estimate of the errors along these two dimensions, comparing

the accuracy of the modeled estimates and the unmodeled CES estimates along different

dimensions of granularity. We find that the modeled estimates improve accuracy across a

range of granularity levels. However, we do not observe improvement at the highest levels of

aggregation (i.e., the left of the figure) likely because the large numbers of observations in

the CES data already produce highly accurate information, so the marginal benefit of payroll

data is small. As a reference, the value of -14 in the x-axis corresponds to an employment-cell

size of around 1 million employees. We also observe little improvement in the estimates at

the most granular level. When the employment-cell size is around 1,000 (corresponding to

about -7 on the x-axis) we see no improvement in the estimates.

To highlight the potential magnitude of improvement, we can focus on areas where payroll

data appears to add the most value. To do this, we run a simple regression of the accuracy of

the blended payroll/CES estimate minus the accuracy of the CES estimate, where accuracy

is measured as the negative of the absolute error. A larger positive value indicates a bigger

improvement from the blended payroll/CES estimate. On the right hand side of the regression,

we include different covariates, including dummy variables of the cell size of the employment

estimate range (e.g., 10K–50K or 50K–100K employees), a measure of the payroll coverage

for the cell, along with 2-digit industry fixed effects. Estimates are shown in Table A1.

Consistent with the Figure 6, where a positive sign indicates that the accuracy of the blended

CES payroll data is higher. We find the largest gains for mid-sized cells. We also find that the

error difference to be partly explained by industry. Some NAICS industries like educational

services (61) and real estate (53) show relatively large improvements.

We select the categories from the regression that indicate the largest improvement, including

employment-cell size range from 1K to 500K employees and 10 industries with the largest

coefficients out of 18 total. These select categories account for 53 percent of the state-industry

cells, and 39 percent of total employment. Using these select categories, we then evaluate
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Table 5. Improving State-Level Estimates using CES + Payroll Data

(1) (2) (3) (4)
CES Emp Gr 1 0.853∗∗∗ 0.680∗∗∗ 0.607∗∗∗

(.) (438.49) (258.44) (217.93)

Payroll Emp Gr (cont; t=3) 0.213∗∗∗ 0.140∗∗∗

(89.42) (15.06)

Payroll (cont; t3) Coverage x Emp Gr 2.008∗∗∗

(27.72)

Payroll Emp Gr (st-Agg; t3) 0.0369∗∗∗

(10.52)

Constant 0.000138 -0.000601 -0.000173
(0.21) (-0.99) (-0.30)

Observations 41,924 41,924 41,924 41,924
1−R2 0.179 0.179 0.150 0.135
1−R2 unweighted 0.309 0.309 0.281 0.249
1−R2 (excl. 2020-03 to -05) 0.347 0.347 0.317 0.306
1−R2 OOS (rolling) 0.177 0.216 0.176 0.154
1−R2 OOS (cf) 0.179 0.179 0.151 0.136
MAE 0.00853 0.00801 0.00758 0.00731
MAE OOS (rolling) 0.00876 0.00865 0.00810 0.00777
MAE OOS (cf) 0.00853 0.00802 0.00759 0.00733
t statistics in parentheses
Outcome is QCEW Emp Gr (Mean Abs Dev=0.014). Observations at the State-NAICS2-Month level.
Dates=[2017,2021-06]. Variables are NSA. Analytic weights are lagged QCEW 2-digit NAICS empl.
Payroll Coverage is calculated as lagged Payroll employment divided by lagged QCEW employment.
Coverage included when coverage is interacted with Gr.
Restricted to observations with valid CES and Pay GR. Non-CES Equal models include state FEs.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This table examines the performance of the estimates combining CES and payroll data at the state,
2-digit industry level. Column (1) shows the baseline, unmodeled CES estimates, column (2) allows for CES
to be a fitted value, column (3) includes payroll and CES data, and column (4) includes additional covariates
based on the payroll data. Column (4) demonstrates that the combined estimates perform better than the
baseline CES estimates.
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Figure 6. Production Frontier for State-level Estimates: Fitted Lowess Values of
Accuracy and Granularity
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Notes: The figure shows a lowess estimate that is parallel to the right panel of Figure 4. The red line
shows the lowess fitted value based on CES alone, and the blue line shows the lowess value based on the
combined modeled payroll and CES estimates, using the out-of-sample errors. The accuracy is measured in
the −ln(MSE) as in the prior figure, and the x-axis is the inverse of the log employment of the bin. The
figure shows that the estimates may be improved along much of the range, except the most disaggregate
estimates (i.e., the right portion of the figure) and the most aggregate estimates (i.e., the left portion of the
figure).
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the improvement in mean absolute error. For this subsample, we find the mean absolute error

based on the CES is 0.0098 and the mean absolute error based on payroll and CES combined

is 0.0079, which is about 19 percent improvement, nearly double the aggregate improvement.

The magnitude of the improvement is important for two reasons: (1) it shows that there are

areas where the improvement is substantial, which is obscured in the aggregate number; and

(2) it highlights what the possible improvements might be if a data source larger than our

payroll data were available.

Overall, the estimates in this section demonstrate the potential for payroll data to improve

the accuracy of existing CES estimates, potentially reducing revisions and providing more

accurate information sooner.

6.3. Producing New and More Granular Estimates — County Estimates

We next explore the potential use of payroll data to be used in combination with CES data

to generate new county-level estimates. Table 6 shows the county-level estimates. The first

column reports the baseline estimates using the unmodeled CES data. When applying the

CES data at the county level, we use the corresponding CES estimate for the associated

geography. If the county resides in an MSA, we use the CES estimate for that MSA, but if

the county resides outside an MSA, we use the corresponding CES estimate for the state.

Column (2) fits a simple regression only including CES in the model, allowing the coefficient

to be different than 1. Column (3) uses only a simple linear function of payroll county-level

information and we find estimates to be worse relative to using solely CES data (i.e., columns

(1) or (2)). Similarly, even when more complex functional forms of payroll data are added

in column (4) (e.g., interactions with coverage, state-aggregates by 2-digit industry, and

county-aggregates across industry), we still find the fit to be a bit worse than unmodeled

CES data. The last two columns combine CES and payroll data. In column (5) payroll data

enters in a simple linear specification, and we find most of the cross-validation metrics are

better with the combined information, compared to the unmodeled CES data. Finally, column

(6) includes both the CES data and additional payroll estimates. Here we see improvements

across all the metrics, with about 9% improvement in the rolling MAE relative to unmodeled

CES estimates. The improvement is 13% based on the cross-fold metrics.19

19The improvement based on the 1−R2 metric is smaller, but we think much of that may be attributable
to the pandemic, a period of time where there were special adjustments to the CES to account for large exits
in the market. This is discussed in greater detail in the next section.
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Overall, the MAE is considerably smaller than the baseline in column (1). Moreover, it is just

a bit larger than the MAE we observe for existing MSA-level estimates at the 2-digit industry

level, reported in Table 1. We think these estimates suggest great potential for using these

alternative series for producing more granular-level county estimates.

Similar to the state-level Figure 6, we can produce Figure 7 at the county level showing

accuracy on the y-axis and granularity on the x-axis. For counties, we see that all of the

gain in prediction is for the medium and large industry-county cell sizes ranging in size from

around 1,000 (i.e., approximately -7 on the figure) to around 500,000 (i.e., approximately -13

on the figure). For the smallest cell sizes of around 200 employees or less (i.e., around -5.5 on

the figure), there is no improvement from adding the payroll data, likely due to considerable

noise in both the CES and payroll data sources for this cell size.

Figure 7. Production Frontier for County-level Estimates: Fitted Lowess Values of
Accuracy and Granularity
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Notes: The figure shows a lowess estimate that is similar to the right panel of Figure 4 showing the accuracy
on the y-axis and granularity on the x-axis. The red line shows the lowess fitted value based on CES alone,
and the blue line shows the lowess value based on the combined modeled payroll and CES estimates, using
the out-of-sample errors. The accuracy is measured in the −ln(MSE) as in the prior figure, and the x-axis is
the inverse of the log employment of the bin. The figure shows that the estimates may be improved along
much of the range, except the most disaggregate estimates (i.e., the right portion of the figure).
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Table 6. Improving County-level Estimates using CES + Payroll Data

(1) (2) (3) (4) (5) (6)
CES Emp Gr (MSA or State) 1 0.843∗∗∗ 0.769∗∗∗ 0.667∗∗∗

(.) (713.96) (600.29) (485.81)

CES State Emp Gr * 1(non-
MSAs)

-0.210∗∗∗ -0.301∗∗∗ -0.244∗∗∗

(-137.28) (-178.90) (-145.91)

Payroll Emp Gr (cnty-naics2; t3) 0.0986∗∗∗ 0.0256∗∗∗ 0.0274∗∗∗ 0.00749∗∗∗

(46.98) (10.91) (13.56) (3.77)

Payroll Emp Gr (t3) * 1(non-
MSAs)

0.0117∗∗ 0.0492∗∗∗ 0.0318∗∗∗

(2.91) (14.12) (9.31)

Payroll Emp Gr (Cnty-naics2) x
Payroll Coverage (naics2) (t3)

0.463∗∗∗ 0.293∗∗∗

(65.41) (48.83)

Payroll Coverage vs QCEW
(Cnty-naics2, 2020-01, t3)

-0.00162 -0.00248∗

(-1.21) (-2.17)

Payroll Emp Gr (cnty-Agg; t3) 0.144∗∗∗ 0.0897∗∗∗

(143.58) (104.94)

Payroll Emp Gr (state-naics2;
t3)

0.307∗∗∗ 0.111∗∗∗

(342.04) (133.09)

Constant 0.00110 -0.00166 -0.00171 0.000356 0.000109
(0.17) (-0.21) (-0.24) (0.06) (0.02)

Observations 898,139 898,139 898,139 898,139 898,139 898,139
1−R2 0.501 0.490 0.717 0.590 0.441 0.423
1−R2 (excl. 2020-03 to -05) 0.236 0.253 0.0270 0.104 0.267 0.287
1−R2 (rolling) 0.497 0.562 0.934 0.732 0.524 0.484
1−R2 (CrossFold) 0.501 0.494 0.721 0.617 0.445 0.431
MAE 0.0157 0.0144 0.0171 0.0157 0.0139 0.0136
MAE (rolling) 0.0159 0.0151 0.0185 0.0170 0.0149 0.0144
MAE (CrossFold) 0.0157 0.0144 0.0172 0.0158 0.0139 0.0136
t statistics in parentheses
Outcome is QCEW Emp Growth (Mean Abs Dev=0.018). Observations at the County-NAICS2-Month level. Full dates=[2017,2021-06].
Variables are NSA. Analytic weights are lagged QCEW 2-digit NAICS empl. Payroll Coverage is calculated as
lagged Payroll employment divided by lagged QCEW employment. County aggregate growth is employment growth across all industries
within the county. State-NAICS2 is state-wide growth for the given industry.
Restricted to observations with valid CES employment growth.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This table examines the performance of the estimates combining CES and payroll data at the county,
2-digit industry level. Column (1) shows the baseline, unmodeled CES estimates, column (2) allows for CES to
be a fitted value, column (3) includes payroll data alone and without CES, and column (4) includes functional
forms of payroll data, without CES. Columns (5) and (6) include both CES and payroll data. Overall, we find
that performance, as measured by MAE, improves when CES and payroll data are combined, especially in
column (6), where functional forms of the payroll data are included.
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The evidence from Table 1 shows how the payroll data can improve the prediction of county-

level estimates relative to CES alone, and Figure 6 shows that most of the improvement is

for larger county-level cells. However, BLS does not release CES data with the intention of

representing MSA- or state-level estimates as county-level estimates.

6.3.1. Statistical Test of Frontier Expansion at the County Level

Because the above bases of comparison for county-level accuracy are state and MSA statistics

that are not necessarily intended to be used to convey county information, we propose

an alternative approach that is based on tolerances inferred exclusively from official series.

To determine whether the estimated county-level series from Table 1 column (6) meets

current standards, we estimate the current production possibility frontier for different levels of

granularity. We then extrapolate the accuracy of county-level statistics based on the estimated

relationship between accuracy and granularity, and test whether the newly minted statistics

lie on or beyond the estimated frontier. We first include a figure that furnishes the intuition

for this approach before we present the formal statistical test.

Just as Figure 4 above, 8 depicts MSE rates from CES estimates against varying levels of

granularity, where the y-axis is the negative of the log of the MSE and the x-axis is the

negative of the log of the level of granularity. The green points are revisions between official

CES initial and final estimates for different geographic areas and industries (i.e., national,

state, and MSA; and NAICS 3-digit, 2-digit, and all industries). The red line is fitted to

the green points, capturing the relationship between accuracy and granularity. The blue

points represent hypothetical revisions between the county QCEW and proposed county-level

estimates that use the combined CES and payroll data. Intuitively, we consider the hypothesis

that the blue dots lie, on average, along the red line. A rejection of this hypothesis for a

collection of blue dots that lie on average above the blue line provides evidence that the

proposed estimates are an improvement relative to the accuracy extrapolated from published

official statistics, while a failure to reject would indicate estimates that are consistent with

current standards.20 Rejecting this hypothesis when the blue dots lie below the line would
20Such a statistical test incorporates an estimate of the variance in accuracy conditioned on granularity, and

we recognize that failure to reject a hypothesis can depend on this quantity in a relevant manner: Precisely
estimated zeroes are distinct from failures to reject due to a large residual variance. In this case, however,
it should be noted that a large residual variance does not imply that the newly constructed estimates are
noisy, but rather, that there is a greater range of noisiness in the estimated statistics (the noisiness of the
estimates, conversely, is reported on the vertical axis). Nevertheless, the fact of a relatively wide confidence
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indicate that the new estimates perform worse than expected based on this standard.

This test is formalized in a relatively simple algorithm: We first regress accuracy (the negative

log MSE) on granularity (the negative of log cell size), for only the official series. This

establishes the baseline relationship, and from this, we extrapolate the anticipated accuracy

levels of the new statistics (based on the main specification Table 1 column (6)) as a function

of their granularities—that is, we compute the expected accuracy of the proposed county-level

statistics based on this regression line. We then compute the residuals between the expected

and actual accuracy for each of these points, performing a t-test on the difference between

the groups of points above and below this line. As a comparison, in addition to the main

specification that combines CES and payroll data, we also test this same relationship using

CES for the corresponding county estimate (i.e., looking at the MSE if the corresponding

CES is applied at the county level).

The estimated relationship between granularity and accuracy depends on the collection of

statistics on which the relationship is estimated. Thus, we consider two approaches for

establishing this expected relationship. In the first, we estimate this relationship making use of

all official CES levels of aggregation. In the second, we use only MSA and state geographies

and 2-digit and 3-digit NAICS industries. One may argue that the latter, more granular state

and MSA statistics are more comparable to the county-level estimates.21

The results of these t-tests are shown in Table 7. The rows show t-tests from two separate

models. The first row represents the test associated with county estimates based exclusively on

state and MSA CES, while the second row shows t-tests associated with the main specification

that combines payroll and CES information. The two columns show t-tests from the two

ways that we estimate the expected relationship between granularity and accuracy: The first

column is associated with a relationship based on all available CES statistics, while the second

column is associated with a relationship estimated from only the more disaggregated series.

The t-test in the second row and first column of Table 7 reveals that our main specification has

accuracy levels that are higher than the current frontier when compared to all official statistics,

interval (especially for a negative coefficient) may necessitate some judgment or further exploration from the
statistical agency.

21Each collection of statistics that is published provides its own distinct estimate of the relationship between
accuracy and granularity, as demonstrated in Figure A1 of the appendix. Because of this, the statistician
might consider estimating the relationship from the set of statistics that is in some sense closest to the
proposed; but in using a smaller set of observations, there is a risk of estimation error. We leave further
exploration of this trade-off to future work.
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while the t-test in the second column suggests that the accuracy of our main statistics does

not significantly differ from the frontier when compared to the more disaggregated MSA and

state official statistics. We interpret row 2 as providing evidence that the level of accuracy

we observe from our main specification is at least as good as current practice, conditional on

granularity. In contrast, while the first column of the second row of the table suggests that

CES does as well as should be expected, based on the relationship that is estimated from all

levels of aggregation, the second column indicates that CES does significantly worse when

compared to the accuracy estimated from the more granular official series. That is, based

on the second column, CES at the state and MSA level predicts county-level growth with a

lower accuracy than what is expected given the level of granularity.

Figure 8. Comparing Statistical Accuracy of Existing Statistics and New County
Estimates
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Notes: This figure shows a scatter plot of mean squared error (MSE) estimates from CES initial and final
estimates from different levels of granularity, similar to Figure 4. The y-axis is the negative of the log of the
MSE, and the x-axis is the negative of the log of the level of granularity. The green points are error rates
based on official data sources for different geographic and industry granularities (i.e., national, state, MSA,
and NAICS 3-digit, 2-digit, and aggregate). The red line is a fitted line based on the green dots, capturing
the expected value of the MSE based on the level of granularity. The blue dots are the new county-level
estimates using the combined CES and payroll data.
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Table 7. Comparing Existing Trends to Various County Specifications

(1) (2)

CES const. counties -0.0358 -0.112∗∗∗

(0.102) (0.000)

Main specification 0.0455∗∗ -0.0303
(0.033) (0.166)

p-values in parentheses
The coefficient is the average residual for the row sample from a linear trend prediction
that was estimated over existing statistics. The p-value is from a 2-sample t-test of
means of the row sample’s residuals against the residuals from the existing statistics.
The first specification compares each row against the trend for all (non-county) existing
estimates. The second specification limits existing estimates to just State or MSA estimates
at either the 2- or 3-digit level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

6.4. Exploring the Application of Machine Learning

The focus of the paper is primarily on linear models, as this somewhat reduces the scope of

the analysis. In addition, we believe our supplementary payroll data source is likely to have a

linear relationship with the underlying employment statistics, as they are similar measures.

Linear models also have the advantage of being more interpretable than nonlinear models.

At the same time, we recognize the potential of machine learning (ML) models to have

tremendous predictive power. To highlight both the potential and distinct issues involved in

ML analysis, we repeat our previous analysis at the state level, but apply ML tools.

The main results are reported in Appendix Table A2. Overall, we find that our main

specification performs very similarly to a Lasso model, which is not surprising given that both

Lasso and our main specification are linear.

We find very interesting and distinct results using a random forest model. A random forest

prediction model works by combining the predictions of multiple decision trees, each trained

on a random subset of the data, to make more accurate and robust predictions. One limitation

of random forest predictions is that the predictions are based on discrete values of historical

growth rates. This shows up in the performance of the algorithm. Using the cross-fold

cross-validation which uses the entire sample, including the pandemic period, the random
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forest performs considerably better than the other algorithms. However, when our preferred

rolling cross-validation is applied, we find the errors to be substantially higher, likely because

the algorithm poorly fits the pandemic period, as no prior changes match the observed changes

over the pandemic. This is less problematic for linear models, which implicitly assume linear

relationships between the variables.22

These results highlight potential avenues for future research and demonstrate the predictive

potential of machine learning, but they also provide a cautionary lesson of the limitations of

nonlinear models.

7. Improving Timeliness with Payroll Data

One potential advantage of the payroll data is that it is more timely than the CES data. As

discussed earlier, due to the larger sample size of CES, which covers 27 percent of employment,

and the fact that it is based on a nationally representative survey, we find that CES contains

less noise relative to the payroll data.23 However, if the magnitude of the noise in the

payroll data is relatively fixed, then the signal-to-noise ratio may rise during large economic

fluctuations.24 Using timely and high frequency spending data, Dunn et al. (2021) show that

alternative and timely spending data increased in correlation with official statistics around the

pandemic, consistent with the idea that the signal may increase relative to the noise during

large shocks to the economy.

In this section, we use rich regional data from payroll data and CES by 2-digit industry at

the state level, and examine how the ratio of the error to the actual change in employment

changes with the magnitude of the aggregate economic fluctuation. We show this pattern

using Figure 9. The y-axis is the error to signal ratio for each state-2-digit industry.25 The
22We apply ML algorithms to county-level data in Table A3. We obtain results that are similar, in some

ways, to when ML methods are applied at the state level. For instance, the Lasso algorithm performs similar
to our main specification. However, when the random forest algorithm is applied, we have a different result.
The MAE rolling estimates show an improvement, perhaps because there is more county variation to build the
model, but the MAE crossfold actually shows a substantial increase in error. As the 1−R2 metric declines, it
may be that the algorithm is reducing the L2 error more than the L1 error.

23https://www.bls.gov/web/empsit/cesfaq.htm
24For clarity, suppose the noise in the growth rate of employment is normally distributed mean 0 and S.D.

0.02, then when the actual growth rate is 0.02, the error will be proportionally larger than when the actual
growth rate is 0.10.

25The measure is similar to the MASE error concept, but the denominator is the actual economic change
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x-axis is the national absolute change in the employment, which is shown on a log-scale.

The red and blue dots capture the values based on CES and payroll data, respectively. The

solid blue line is the lowess fitted value for the payroll data, while the red line is the lowess

fitted value of the CES data. In general, the CES errors are lower than the payroll errors, as

shown by the red line appearing below the blue line, consistent with our previous discussion.

The figure shows that for large aggregate fluctuations, the payroll data comes close in value

to the CES data as measured by the relative error rate. While payroll estimates perform

slightly worse than the CES estimates, even for these large fluctuations, the payroll data is

substantially more timely, offering an informative signal that is not currently provided by

official statistics.

For large shocks in the economy, this trade-off is arguably reasonable given the greater

timeliness of the payroll data, and the value of economic information during large shocks to

the economy. The trade-off of timeliness and accuracy for large economic shocks, is similar to

the trade-off from geographic granularity discussed earlier, where CES regularly reports MSA

estimates with errors that are substantially larger than corresponding national- or state-level

estimates.

This section shows that the more timely payroll data is arguably more useful when there

are large fluctuations in the economy. We demonstrate this through an application in the

following section.

8. Application of Alternative Data to the COVID–

19 Pandemic

In this section, we describe a plausible and practical application of the alternative payroll

data. In this application, we highlight the potential value of the timely series that is based on

the payroll continuing sample alone, which can be generated just 1 week after the reference

period, as well as of a series that combines CES and payroll data.

A compelling use case for timely economic statistics is in fashioning rapid policy responses

in the cell, rather than the mean absolute deviation.
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Figure 9. Signal-to-Noise Ratio and Economic Shocks

Notes: The y-axis shows the ratio of the error, relative to the observed change in the growth rate. This is
essentially a ratio of the noise to the observed signal. The x-axis shows the size of the aggregate economic
shock. The blue line shows the lowess fitted values for the payroll data, and the red line shows the lowess
fitted value for CES. The figure demonstrates that for large economic shocks, the payroll data performs
similar to the CES data.
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to large and unexpected (or unprecedented) economic events. A salient example of such an

event is the recent COVID–19 pandemic and the economic fallout accompanying local policy

responses such as shutdowns and stay-at-home orders. In this case, there may be significant

benefit to low-latency, high-resolution economic statistics, to rapidly pinpoint the areas that

sustained the the most intense economic repercussions.

While policymakers were undeniably punctual in assembling a package of policy responses to

the COVID–19 pandemic, these were generally not targeted to specific geographical areas

where hard-hit industries were struggling to cope with the aftermath of the event. In many

cases, it has been argued that the policies suffered from higher than expected costs relative

to the measurable benefits.26 In the example below, we show that using payroll data could

have yielded timely information on the hardest hit counties. Yet it should be noted that our

goal here is not to comment on any past policies (which were made based on information

available at the time) nor to suggest how statistics that we introduce should be used. Rather,

our goal is to provide a look at the way such timely statistics might be used as a starting

point for crafting a more economically efficient response to unexpected events in the future.

The two key dates for this application are the March 13 initial declaration of a state of

emergency, and the March 12 reference date for CES, which falls one day prior to the

declaration. Importantly, the downturn in employment did not occur until mid to late March.

As such, more than 2 months had elapsed by the time state-level and MSA-level CES data

were available that covered the immediate aftermath of the emergency declaration. Thus,

to have possessed actionable labor-market statistics immediately following March 13 would

potentially have been helpful throughout the pandemic response. Another key point is that

numerous policies were made for several months after the pandemic, so not only would

more timely information have been helpful, but also more accurate information as the CES

estimates became available. An abbreviated timeline of the COVID–19 pandemic declaration,

its economic effects, and subsequent policy responses is recorded in the Appendix.

To better gauge the potential value of the payroll data series, we examine how various
26One policy response to the pandemic was Paycheck Protection Program (PPP), an initiative that provided

forgivable loans to small businesses and nonprofits to help them retain employees and cover essential expenses.
The program aimed to mitigate economic hardship and maintain business operations during the pandemic.
However, some researchers have argued that the program was poorly targeted, costing between about $150k
to over $300k per job saved according to Autor et al. (2022) and Chetty et al. (2023). At the same time, the
funds for PPP were dispersed very quickly, as highlighted in the timeline in the Appendix, which lays out
both the timing of the COVID–19 pandemic, the PPP policy as well as the timeline for employment statistics
and when policymakers would receive critical employment information.
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estimates can help in identifying the hardest hit counties and industries around the pandemic.

To do this, we conduct a couple of distinct exercises. First, for the month of April 2020,

when 98.2 percent of county-industries experienced job loss, we identify the worst hit counties

and 2-digit industries. More precisely, we rank the county-industry pairs by employment loss,

and see how many county-industries would need to be selected to account for 50% of the

actual loss nationally, where each county is weighted by QCEW employment in March. If the

county-industries were selected randomly, we would expect that 50% of the counties would

be needed to capture 50% of the employment loss.

The results of this first exercise are shown in Table 8. The first line shows the baseline of

random allocation, which requires identifying 50% of the county-industry cells to identify

50% of the employment loss. The last row “QCEW (Ideal Allocation)” uses the QCEW data

as the “truth” to define the employment loss. Using the QCEW, we find that 18.5% of the

county-industry combinations must be identified to capture 50% of the employment loss.

However, as mentioned previously, the QCEW data is based on administrative data that

is only available with a lag of about 5 months, which is far too slow for policy purposes.

Between these two extremes, the rows of the estimates are ordered by level of timeliness,

from payroll t1, which is the most timely estimates based solely on payroll data 1 week after

the reference period, to the CES and main estimates that have the same latency.

As mentioned before, the payroll timeliness is customizable, and it performs relatively better

during large shocks to the economy. Below our baseline random allocation benchmark, the

next three rows of Table 8 show performance of the payroll data 1 to 3 weeks after the

reference period (i.e., 1 week – payroll t1, 2 weeks – payroll t2, and 3 weeks – payroll t3).

These latencies would have been sufficiently low for policymakers to consider this information

prior to the second round of PPP funding, for example. These estimates perform far better

than random assignment for each series, only needing to identify around 26–29% of the

county-industry cells to capture 50% of the employment loss. Improved allocation in where

resources are spent could lead to substantial improvement in jobs saved per dollar spent.

However, it is also important to note that the timely payroll series does not perform as well

as CES and the main estimate (which combines CES and payroll), as shown in the next two

rows.27

The CES performs only slightly worse than the QCEW and substantially better than random
27Recall that this difference is likely due to the especially large sample size of CES, which covers 27% of

employment.
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allocation, needing to select around 20.1% of county-employment cells to identify 50% of

the employment loss. Part of the exceptional performance of the CES data over this period

was related to the careful analysis by staff, who made adjustments to the standard firm

birth-death model around the pandemic.28 In particular, staff took into consideration and

empirically modeled the fact that many of the business exits and entry during the pandemic

may be important to incorporate. Indeed, this type of adjustment is not feasible with the

payroll data and may be reflected in the slightly worse performance of the combined payroll

and CES data relative to the CES estimate. The combined payroll and CES modeled estimate

needs to select 20.6% of the county-industry cells to identify 50% of the loss (Table 6 and

main estimate row (4)).

Table 8. Select County and 2-Digit Industry to Capture 50% of the Employment
Loss

Specifications 2020-04
Baseline Random Allocation 0.500
=Payroll t1 0.286
=Payroll t2 0.265
=Payroll t3 0.261
=CES 0.201
Main 0.206
QCEW (Ideal Allocation) 0.185

total losses (000s) -17,101
Share of counties w/ losses 0.982

Notes: The table shows how many county-2-digit industry categories would need to be identified to capture
50% of employment loss as of April of 2020, where county-2-digit industries are weighted by lagged employment
from QCEW. The first row shows the result based on random guesses, which is 50% by construction. The
following remaining rows are shown in order of timeliness, showing the payroll series, followed by CES and
main, and then QCEW, which is the ideal allocation. The ideal allocation based on the QCEW, which emplies
18.5% of counties would need to be identified to capture 50% of the employment loss. The fifth and sixth
rows show CES and the main estimates, where the main estimates combine the payroll and CES data (column
(6) of Table 6). The performance is only slightly worse than the ideal for both estimates. The next three
rows show estimates based on payroll data, with different timing (1, 2 or 3 weeks after the reference period).
For example, 1 week after the reference period the payroll data would need to identify 28.6% of counties to
capture 50% of employment loss.

After the initial downturn in April 2020, it was important for policymakers to monitor the
28https://www.bls.gov/covid19/effects-of-covid-19-pandemic-and-response-on-the-employment-situation-

news-release.htm
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recovery and determine what areas of the country may be lagging in employment gains. Again,

accurate information may affect where resources are allocated. To capture this notion, we first

use the QCEW data to perfectly identify the 25 percent of counties where the employment

increase was the lowest. We then identify what share of the worst performing counties are

captured using the different estimates for the first 6 months of the pandemic.

The results are reported in Table 9. As a baseline, it is important to note that if county-

industries are identified randomly, then we would only capture 25 percent of the areas with

the lowest employment growth, as shown on the top row of Table 9 for all months. At the

other extreme, using QCEW as the benchmark, we see that it perfectly identifies the 25% of

counties with the lowest employment growth, as indicated by the 1 along the bottom of the

table for all months.

As in the prior table, the rows are listed in order of timeliness. The fifth and sixth rows

track the performance of the CES and the main specification in identifying the lowest 25

percent of counties as measured by employment growth. For the first month of the pandemic

in April, the CES performs the best, identifying 83.2% of the counties, although the main

specification performs nearly as well, identifying 82.7% of the counties. After the initial

month, the main specification consistently performs better than the CES estimate, by 2–3

percentage points each month. While the percentage point difference is arguably small in a

particular month, the improvement in the allocation over the entire time period adds up to

around 13 percentage points, a sizeable difference. This suggests that use of the combined

CES and payroll data may lead to measurably improved outcomes in the long run.

9. Conclusion

Our research has explored the potential benefits and challenges of incorporating big data

sources into economic statistics, with an application targeting regional employment statistics.

We have designed a structure that weighs the advantages of increased timeliness and granularity

against potential bias and noise in these estimates, using revisions observed in official measures

as a benchmark. Through our analysis, we conclude that the integration of data from a major

payroll processor can significantly enhance the accuracy of state-level employment by industry

statistics and can enable the production of county-level estimates. We also provide evidence
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Table 9. Identify 25% of County and 2-digit Industries with the Lowest Increase In
Employment

Specifications 2020-04 2020-05 2020-06 2020-07 2020-08 2020-09
Baseline Random Allocation 0.25 0.25 0.25 0.25 0.25 0.25
=Payroll t1 0.587 0.437 0.379 0.325 0.320 0.332
=Payroll t2 0.614 0.430 0.397 0.366 0.345 0.338
=Payroll t3 0.619 0.430 0.407 0.358 0.336 0.351
=CES 0.832 0.510 0.552 0.412 0.389 0.397
Main 0.827 0.541 0.581 0.438 0.424 0.415
QCEW 1 1 1 1 1 1

Notes: This table preforms a counterfactual exercise of determining how well the weakest performing counties
may be identified across the different series. Specifically, we see how well the algorithms correctly identify the
25% of county-2-digit industry pairs. The first row shows the random baseline allocation. If county-industries
are selected randomly, then on average only 25% of the worst performing counties will be identified. The
second row shows the ideal based on QCEW, where 100% of the counties will be identified. The next three
columns identify the worst performing areas using the timely payroll series alone. The fourth and fifth rows
show the estimates using CES and the main estimates combining CES and payroll estimates (column (6) of
Table 6). The main estimates perform better than CES alone, except for the first month, where CES performs
slighly better. The last row is the “ideal” estimate using QCEW, which by definition perfectly identifies the
worst hit counties.

that the timely payroll data provides useful information on its own, especially in a setting of

significant economic variation.

We illustrate the value of these alternative data sources and estimates through an application

motivated by the policies implemented during the pandemic. In this counterfactual analysis,

we find that the use of alternative data could assist in both timelier and more accurate

targeting of employers that were hit hardest by the pandemic, providing a prototype for

the deployment of alternative data sources and how they may contribute to effective policy

decisions.

We illustrate the feasibility of using alternative data to expand the production frontier of

statistical agencies, offering valuable insights for policymakers and the public. However, the

effective incorporation of such data sources requires careful consideration along each part of

the statistical assembly line: From constructing and adjusting the input series, to selecting

and evaluating models (which potentially combines alternative and traditional survey data
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sources), to testing and evaluating results. Our study provides a demonstration of one way

to thoughtfully and rigorously execute such a program, with a particular focus on providing

appropriate context for statistical evaluation.

As the stream of available data sources has swollen to a torrent, navigating among the range

of potential applications has become an increasingly daunting task. We journey beyond the

basic question of whether such data appears to offer some value, instead exploring and more

formally testing whether the data is valuable, where and when it is valuable, and how much

value the data adds to improving official statistics. This systematic approach simultaneously

looks back at the accuracy of historical series to provide grounding for new or improved

estimates while it looks forward in extrapolating this information to assess the incremental

value of potential improvements. These efforts help chart a way toward improved statistics,

and thus, toward more informed decision-making.
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Appendix

.1. Description of the Payroll Data and Series Construction

The analytics group of the private payroll company maintains several analytical databases

through nightly queries of their production databases (i.e., the databases that support the

various payroll systems). The analytical databases thus provide near real-time data (i.e., there

is at most a 24-hour lag between when a client (i.e., employer) schedules a payment and

when the payment is saved to the analytical databases). The analytical databases also provide

historic data via monthly archiving.

The analytical databases contain attributes of the payroll’s clients and their employees, as well

as summary and detailed information on the payments employers make to their employees.

Payment data are temporal, and thus are organized by the year and month the payments

were processed.

These data are proprietary and are hence siloed inside the payroll company’s computing

environment. Only after extensive processing to aggregate and anonymize the data so that

employer and employee personal information are protected are the transformed “cellular” data

transferred out of the companies computing environment. At this point, the cellular data are

commingled with public statistics as described in this paper.

In general, processing is similar to some CES methods: https://www.BLS.gov/opub/hom/

ces/.

• First, only a subset of payments that employers make to their employees are considered.

These CES-compatible payments are: regular pay, both salaried and hourly; overtime;

holiday and vacation pay; sick leave; tips; piecework and commissions; and supplemental

pay such as bonuses and severance, so long as the payments are regular in both amount

and schedule.

• Secondly, following CES, processing is monthly and only payments made for a pay

period that includes the 12th of each month are considered.

• Finally, processing follows CES matched sample methodology. A employer (and all of

https://www.BLS.gov/opub/hom/ces/
https://www.BLS.gov/opub/hom/ces/
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its current employees) is only included in processing if the employer existed in both the

current and prior months.

Because only payments centered around the reference date of the 12th of the month are

considered, an important consequence is that multiple months before and after the reference

month must be accessed. This is due to the fact that payments can be made outside of the

reference month (e.g., prepayments, corrections, and payments made by employers that pay

by calendar month).

Specifically, employment and wage processing are based on payments stored in 5 months

of analytical wage databases: the reference month as well as the 2 prior and subsequent (if

these exist) months. For example, for the payments made in the 5 months centered on the

payroll reference date of 6/12/2022, practically all payments a (97.76 + 1.88 = 99.64%) are

made during the reference month (m) (97.76%) and in the month following the reference

month (m+1) (1.88%). However, a non-trivial percentage of payments (0.36%) are made

in months m-2, m-1, and m+2. (Not shown are payments made outside of this 5-month

window, which are undoubtedly a very small but non-trivial percent).

More detailed processing steps are given below. Note that while this paper only discusses

employment, future endeavors may also examine payments and wages. In addition, the

concept of employment and payment for work are closely tied, as we define employment as a

period of time over which an employee received payment. The primary benchmark for wages

would also be QCEW, but the wage data in the QCEW is recorded quarterly, rather than

monthly, so the process of validating the estimates would be different. Both employment and

wage processing are discussed in this section.:

1. Filtering the payment data:

• Filter payments such that only employers and their employees that are active as

of the payroll reference date for the particular year and month (i.e., as of the 12th

of the month) are included.

• Further filter these employers such that only continuing units (i.e., those employers

that were also active as of the prior monthly payroll reference date) are included.

• Filter for employers whose payment frequency is weekly, bi-weekly, semi-monthly,

or monthly only.
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2. Simple corrections and/or transformations:

• If any two of payment amount, hours, or rate are present, but the third is missing,

impute using the formula: rate = amount/hours.

• If either the payment amount or hours is negative but the other is not, set both

to be negative

• If payment frequency is missing, flag the payment as needing imputation. Otherwise,

use payment frequency to convert amount and hours to weekly units by scaling

amount and hours by the following factors:

– Monthly: 12
52

– Semi-monthly: 24
52

– Bi-weekly: 26
52

3. Added variables: Determine the week relative to the payroll reference date they payment

was processed. This variable takes on the values:

• 1: if scheduled in the first week (i.e., from the 12th - 18th of the month),

• 2: if scheduled in the second week following the 12th,

• 3: if scheduled in the third week following the 12th, and

• 4+: if the payment was scheduled 4 or more weeks after the 12th of the month.

4. Payment corrections: Corrections occur when errors in payments are subsequently

corrected. Corrections are legitimate payments and should be included in processing

assuming both the initial error and correction(s) can be paired (otherwise they may

need to be imputed). Unfortunately, being able to identify the error and subsequent

correction(s) is likely a rare occurrence. This is due to many factors, including:

• The timing of the correction (does it occur during the same pay period or in a

different one?)

• The type of correction (was the initial error an underpayment or overpayment?)

• How the corrections are made (is it a single correction or multiple repeated partial

corrections?)

Corrections that occur within the same pay period as the initial error are the easiest

to deal with. For example, a employer may initially enter an incorrect amount for a

particular payment and zero this out by entering the negative of the amount. “Zero-sum”

corrections such as these are flagged but otherwise left alone.
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Corrections that occur in a different pay period are far more difficult to deal with. This

is due in part to the way payments are stored in the analytical databases (i.e., by the

year and month the payments are scheduled). If we only looked at the payments made

in the reference period month, there is a good chance either the initial error or the

correction would be missing. To alleviate this, we look for payments that occur during

the reference period by looking in the reference period month as well as in the 2 prior

months and the 2 subsequent months (if these occur).

Despite looking at multiple months, it is not unusual that the full payment history (i.e.,

both the error and the correction) is incomplete. This will occur if the corrections (or

original payments) occur outside of the 5-month window considered during processing.

Even if the error and correction are made within this window, the employer must enter

the same pay period start and end dates for both the error and correction in order for

both to be extracted.

Errors can be due either to an initial underpayment or overpayment. The latter case is

more readily identified if the resulting correction is a single negative payment. In this

case, the presence of negative correction is flagged during processing but otherwise is

not treated.

If rather than a single negative payment, the correction of an initial overpayment consists

of garnished future payments (i.e., payments that are reduced by a partial repeated

amount), identifying the initial error and subsequent corrections is an altogether more

complicated problem. This is also the case if the initial error is an underpayment,

regardless of whether the correction consists of single payment or multiple repeated

partial payments. In these situations, corrections are better considered as contributing

to anomalous wages, and treated in the same manner as anomalous wages are.

5. Imputation: Negative payments are flagged. If both the initial error and correction

can be identified, and the resulting amount is not negative, these are included when

determining wages. Otherwise, these payments are imputed.

6. The final processing step is to aggregate the processed employment and wage microdata

to safeguard payroll client (i.e., employer) privacy. The standardized weekly payments

are summed for each employer/employee, giving the weekly wage. Employment is a

binary variable equal to 1 if any payments were made to the employee for a payroll that

includes the monthly payroll reference date. Finally, the employer/employee wages and

employment are summed to the cellular level. The cells are defined by the following

employer and employee characteristics:
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• 2-digit NAICS

• current and prior month client size class

• county

• current and prior month payment week
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.2. COVID Timeline

• March 12, 2020 - CES reference date for March employment

• March 13, 2020 - The President of the United States declares a national emergency.

• March 15, 2020 - Many states begin to implement shut-downs and stay-at-home orders.

• March 27, 2020 - CARES Act signed into law (individual payments and PPP loans).

• April 24, 2020 - Some states begin to reopen/roll back pandemic policies. A second

round of funding was signed into on law and disbursements made from April 27-August

8, 2020.

• May 9, 2020 - Official national unemployment rate in the U.S. hits 14.7%.

• May 18, 2020 - HHS awards states, territories and local jurisdictions funding from

CARES Act for COVID–19 response (mostly testing).

• May 22, 2020 - CES state and metro estimates for April revealing the depth of pandemic

loss for regions.

• July-August 2020 - Beginning of deals between the U.S. Government and vaccine

providers for production and distribution.

• September 23, 2020 - HHS and CDC awards states, territories and local jurisdictions

funding from CARES Act to support vaccine distribution.

• December 27, 2020 - A third round of funding for CARES act was signed and

disbursements made from January - May 2021.

• January 6, 2021 - HHS and CDC announces $22 billion in funding for states, territories

and local jurisdictions to support vaccine distribution.

.3. Additional Analysis
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Figure A1. Granularity Trends in Accuracy Across Different Aggregation Levels for
Existing Estimates
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Notes: This figure shows fitted lines of mean squared error (MSE) estimates from CES initial and final
estimates from different levels of granularity. The y-axis is the negative of the log of the MSE and the x-axis
is the negative of the log of the level of granularity. Each line is a fitted value based on the different series.
For example, MSA 3-digit NAICS, State 2-digit NAICS or USA 3-digit. The estimates show the different
relationships between accuracy and granularity across the different series.



53

Table A1. Regression of State-Level Accuracy on Employment Cell Characteristics
(Blended Payroll/CES Accuracy Minus CES Accuracy)

(1) (2) (3)
Payroll Coverage 0.00816∗∗∗ -0.00506 0.00181

(2.65) (-1.31) (0.49)

>500k Emp -0.000449∗ 0.000828
(-1.92) (1.55)

>250k Emp & ≤ 500k 0.0000178 0.00133∗∗∗

(0.10) (2.51)

>100k Emp & ≤ 250k 0.00113∗∗∗ 0.00224∗∗∗

(5.95) (4.36)

>50k Emp & ≤ 100k 0.00214∗∗∗ 0.00325∗∗∗

(8.68) (5.91)

>10k Emp & ≤ 50k 0.00254∗∗∗ 0.00368∗∗∗

(9.48) (6.92)

>5k Emp & ≤ 10k 0.00392∗∗∗ 0.00540∗∗∗

(5.65) (6.66)

>1k Emp & ≤ 5k 0.000581 0.00228∗∗∗

(0.68) (2.05)

≤ 1k -0.00339∗∗∗ -0.00137∗∗∗

(-442.16) (-2.60)

Constant 0.00288∗∗∗

(6.67)
Observations 38,767 38,767 38,767
R2 0.017 0.013 0.026
Adjusted R2 0.017 0.013 0.025
NAICS 2d FEs X X
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The accuracy is measured in the negative of the absolute error. The dependant variable is the accuracy
of the blended estimate (Payroll/CES) minus the CES accuracy. On the right hand side of the regression, we
include different covariates, including dummy variables of the cell size of the employment estimate range
(e.g., 10K–50K or 50K–100K employees), a measure of the payroll coverage for the cell, along with 2-digit
industry fixed effects. Column 1 includes coverage and industry cell size; column 2 includes coverage and
industry fixed effects; and column 3 includes cell sizes and industry fixed effects.
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Table A2. Exploring State-Level Estimates using CES + Payroll and Machine
Learning Estimation

(1) (2) (3) (4)
cnsreg reg Lasso RF

CES Emp Gr 1 0.607∗∗∗ 0.608 23.79
(.) (217.93)

Payroll Emp Gr (cont; t=3) 0.140∗∗∗ 0.0790 12.54
(15.06)

Payroll (cont; t3) Coverage x Emp Gr 2.008∗∗∗ 1.955 7.677
(27.72)

Payroll Emp Gr (st-Agg; t3) 0.0369∗∗∗ 0.0363 8.512
(10.52)

Constant -0.000173 0.0000269
(-0.30)

Observations 41,924 41,924 41,924 41,924
1−R2 0.179 0.135 0.135
1−R2 unweighted 0.309 0.249 0.253
1−R2 (excl. 2020-03 to -05) 0.347 0.306 0.308
1−R2 OOS (rolling) 0.177 0.154 0.153 0.393
1−R2 OOS (cf) 0.179 0.136 0.137 0.105
MAE 0.00853 0.00731 0.00731
MAE OOS (cf) 0.00853 0.00733 0.00734 0.00641
MAE OOS (rolling) 0.00876 0.00777 0.00776 0.0122
t statistics in parentheses
Outcome is QCEW Emp Gr (Mean Abs Dev=0.014). Observations at the State-NAICS2-Month level.
Dates=[2017,2021-06]. Variables are NSA. Analytic weights are lagged QCEW 2-digit empl.
Payroll Coverage is calculated as lagged Payroll employment divided by lagged QCEW employment.
Coverage included when coverage is interacted with growth.
Restricted to observations with valid CES and Payroll Gr. Coverage included in RF.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This table reports state-level by 2-digit industry county estimates, but applying standard ML tools to
the analysis. The first two columns show our baseline models, where column (1) shows predictions based on
the unmodeled CES estimates. Column (2) shows the main estimates that combine payroll and CES data.
Column (3) applies a Lasso estimation method. Column (4) applies the random forest ML algorithm and
includes “feature importance” metrics rather than coefficients.
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Table A3. Exploring County-Level Estimates using CES + Payroll and Machine
Learning Estimation

(1) (2) (3) (4)
cnsreg reg Lasso RF

CES Emp GR (MSA or State) 1 0.667∗∗∗ 0.664 521.0
(.) (485.81)

CES State Emp GR * 1(non-MSAs) -0.244∗∗∗ -0.239 170.6
(-145.91)

Payroll Emp Gr (cnty-naics2; t3) 0.00749∗∗∗ 0.0110 155.2
(3.77)

Payroll Emp Gr (t3) * 1(non-MSAs) 0.0318∗∗∗ 0.0120 89.42
(9.31)

Payroll Emp Gr (Cnty-naics2) x Payroll
Coverage (naics2) (t3)

0.293∗∗∗ 0.294

(48.83)

Payroll coverage vs QCEW (Cnty-naics2,
2020-01, t3)

-0.00248∗ 0.00604 88.00

(-2.17)

Payroll Emp Gr (cnty-Agg; t3) 0.0897∗∗∗ 0.0899 212.0
(104.94)

Payroll Emp Gr (state-naics2; t3) 0.111∗∗∗ 0.111 386.4
(133.09)

Constant 0.000109 -0.000825
(0.02)

Observations 898,139 898,139 898,139 898,139
1−R2 0.501 0.423 0.426 0.129
1−R2 (rolling) 0.497 0.484 0.489 0.475
1−R2 (CrossFold) 0.501 0.431 0.429 0.429
MAE 0.0157 0.0136 0.0137 0.00384
MAE (rolling) 0.0159 0.0144 0.0146 0.0141
MAE (CrossFold) 0.0157 0.0136 0.0136 0.0160
t statistics in parentheses
Outcome is QCEW Emp Gr (Mean Abs Dev=0.018). Observations at the County-NAICS2-Month level.
Full dates=[2017,2021-06]. Variables are NSA. Analytic weights are lagged QCEW 2-digit employment
Restricted to observations with valid CES employment growth.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: This table reports county-level by two-digit industry county estimates, but applying standard ML tools
to the analysis. The first two columns show our baseline models, where column (1) shows predictions based
on the unmodeled CES estimates. Column (2) shows the main estimates that combine payroll and CES data.
Column (3) applies a Lasso estimation method. Column (4) applies the random forest ML algorithm and
includes “feature importance” metrics rather than coefficients..
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Figure A2. PPF
CES initial vs CES final (USA, State, MSA) and QCEW (County)

Notes: The table shows the scatterplot shown previously in Figure 4, but one distribution at a time.
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